

Thin Film Deposition by Sputtering and PVD

Essential Step of Modern
High Technology

Overview of Deposition Methods

	Physical Vapor Deposition (PVD)			Chemical Vapor Deposition	
	Evaporation	Sputtering	Pulsed Laser Deposition	CVD, MOCVD, PECVD,	
Production of species	Thermal energy	Momentum transfer	Thermal energy+	Chemical reaction	
Deposition rate	High, 10 kÅ/s	Low	Moderate	Moderate, 2.5 kÅ/s	
Species	Atoms & ions	Atoms & ions	Atoms, ions & clusters	molecules →atoms	
Energy of species	Low, 0.1-0.5 eV	High, 1-10 eV	Low to high	Low, high for PECVD	
Complex objects	Shadowing	Non-uniform thickness	Shadowing, non- uniform	Good coverage	
Scalability to large wafers	yes	yes	no	yes	

Fundamentals of Film Deposition

Have a good vacuum!

$$\lambda = \frac{1}{\sqrt{2\pi nd^2}} = \frac{k_{\rm B}T}{\sqrt{2\pi Pd^2}},$$

d: molecular diameter,

n: concentration of the gas,

P: pressure, T: temperature

P(mbar)	λ (cm)	Collisions (1/s)	Impinging flux (1/cm²s)	Monolayer /s
1	7·10 ⁻³	7·10 ⁶	3.1020	3·10 ⁵
10-3	7·10°	7·10 ³	3·10 ¹⁷	3·10 ²
10-6	7·10 ³	7·10°	3·10 ¹⁴	3.10-1
10-9	7·10 ⁶	7·10 ⁻³	3.1011	3.10-4

Fundamentals of Film Deposition

Thermodynamics

Thermodynamic Gibbs potential G,

$$dG = -SdT + VdP$$
in equilibrium,
$$dg_{\text{Liquid}} = dg_{\text{Vapor}}(v, P);$$

$$-s_{\text{L}}dT + v_{\text{L}}dP = -s_{\text{V}}dT + v_{\text{V}}dP$$

$$\frac{dP}{dT} = \frac{s_{\text{V}} - s_{\text{L}}}{v_{\text{V}} - v_{\text{L}}} = \frac{T}{T} \cdot \frac{s_{\text{V}} - s_{\text{L}}}{v_{\text{V}} - v_{\text{L}}} = \frac{q}{T(v_{\text{V}} - v_{\text{L}})}$$

q: specific heat of evaporation

Fundamentals of Film Deposition

Thermodynamics
$$\frac{dP}{dT} = \frac{q}{T(v_{v} - v_{L})} \approx \frac{qP}{T\frac{RT}{\mu}}$$

$$\frac{dP}{P} = \frac{\mu q}{R} \frac{dT}{T^2} \rightarrow \ln P = -\frac{\mu q}{R} \frac{1}{T} + C$$

PVD involves the following sequence of steps:

- the material is converted into vapor by heating;
- 2) the vapor is transported from its source to the substrate in a vacuum
- 3) the vapor condense on the substrate and forms the thin film.

The advantages of PVD by evaporation are:

- high purity of the thin film thanks to the high-vacuum environment;
- no substrate damage from impinging atoms during the thin-film formation (unlike sputtering that produces some damage because of high-energy particles);
- high deposition rates;
- relatively small substrate heating.

Physical Vapor Deposition (PVD)

Vacuum Chamber

Uniformity

Figure 3-6 Film thickness uniformity for point and surface sources. (Insert) Geometry of evaporation onto parallel plane substrate.

Uniformity

- Lower deposition rate gives better uniformity, but increases risk for contamination in low-vacuum chambers.
- Larger distance from the source to the substrate improves uniformity, but also lowers the deposition rate.
- Rotating holder improves uniformity

Alloys

When evaporating alloys the composition changes with time of evaporation

Fig. 4.6.2. Phase diagram for systems with a complete series of solid solutions (P = const.). Example: A = Ag, B = Au, $T_A = 960^{\circ}\text{C}$, $T_B = 1063^{\circ}\text{C}$ (from M. Hansen, see ref. on p. 100).

One can compensate for the changes

Figure 4.5 Alloy evaporation with continuous feed.

Co-evaporation

Lateral composition change

Deposition Rate

- The deposition rate depends on the position and orientation of the substrate in the chamber.
- The evaporation rate Γ_e is the rate at which a material vaporizes. It can be calculated according to the equation :

$$\Gamma_e \left[\frac{g}{cm^2 s} \right] \approx 0.06 \sqrt{\frac{M}{T}} P_{\nu}(T) [\text{Torr}]$$

where M is the molecular mass, Pv is the vapor pressure, and T is the temperature.

- A reasonable deposition rate (0.1 mg/cm² s) requires a vapor pressure above 10-2 torr.
- Refractory metals, such as W, need temperatures in excess of 3000°C to reach such a vapor pressure. Other metals, for instance Au, Ag, Cu, In, require much less heating.

Sources

Resistive boats: refractory metals W, Ta, Mo ceramic crucible or ceramic coating

E-Beam Evaporation

Figure A1.2.1. Electron beam heated evaporation source.

- Heat conduction of the hearth limits temperature
- No reaction between the hearth and the evaporated material; many materials can be evaporated, like W, Mo, Al₂O₃, SiO₂

High power density: 10 kV, 1.5A, 0.2-1cm² → 15-75 kW/cm² thermal conduction + evaporation + electron reflection + radiation losses

Web Coating

4000 miles² /year (packaging 60%)

Problems: plastic film can melt if the deposition rate (=energy flux) is too high

Figure 3-17 Schematic of web coating system including heat-transfer model describing web temperature.

Clean and high-density vapor flux in e-beam PVD systems

The impact of an atom or ion on a surface produces sputtering from the surface as a result of the *momentum transfer* from the in-coming particle. Unlike many other vapor phase techniques there is no melting of the material.

History of Sputtering

- The verb to SPUTTER originates from Latin SPUTARE (to blow one's noise).
- Grove (1852) and Plücker (1858) were first to report vaporization and film formation of metal films by sputtering.
- Key to understanding sputtering was discovery of electrons and positive ions in low pressure gas discharges and atom structure (J.J. Thomson, Rutherford), 1897--

http://www.gencoa.com/tech/whatsputtering.html

Sputtering yield T

	Sputtering Held of Elements at 500 ev					
Gas	He	Ne	Ar	Kr	Xe	
Element	1	62778890	.0000000			
Be	0.24	0.42	0.51	0.48	0.35	
C	0.07	-	0.12	0.13	0.17	
Al	0.16	0.73	1.05	0.96	0.82	
Si	0.13	0.48	0.50	0.50	0.42	
Ti	0.07	0.43	0.51	0.48	0.43	
V	0.06	0.48	0.65	0.62	0.63	
Cr	0.17	0.99	1.18	1.39	1.55	
Cu	0.24	1.80	2.35	2.35	2.05	
Fe	0.15	0.88	1.10	1.07	1.00	
Ni	0.16	1.10	1.45	1.30	1.22	
Nb	0.03	0.33	0.60	0.55	0.53	
Мо	0.03	0.48	0.80	0.87	0.87	
Pd	0.13	1.15	2.08	2.22	2.23	
Ag	0.20	1.77	3.12	3.27	3.32	
Ta	0.01	0.28	0.57	0.87	0.88	
w	0.01	0.28	0.57	0.91	1.01	
Re	0.01	0.37	0.87	1.25	_	
Os	0.01	0.37	0.87	1.27	1.33	
Ir	0.01	0.43	1.01	1.35	1.56	
Pt	0.03	0.63	1.40	1.82	1.93	
Au	0.07	1.08	2.40	3.06	3.01	
Au	0.10	1.3	2.5		7.7	
Pb	1.1	_	2.7	_		

$$S(E) = \frac{3}{4\pi^2} \alpha \frac{4M_1M_2}{(M_1 + M_2)^2} \frac{E}{U_0}$$

E < 1 keV; $U_0 = \text{binding energy}$

ION ENERGY --- eV

Magnetron sputtering

http://www.angstromsciences.com/technology/sputtering.htm

important that the film is continuous at the step

Step coverage

Pros:

- Good coating and step coverage
- Preserves stoichiometry of multi-component compounds
- Good adhesion
- Majority of materials, ceramics, and refractory metals

Cons:

- Relatively low deposition rates
- Substrate heating
- Targets wear out non-uniformly → costs
- Gas atoms may be incorporated in film

Sputtering systems

DC glow discharge

Figure A3.0.1. Schematic of a dc glow discharge sputtering system.

Cons: limited to conductive materials

Vdc ~ 500-5000 V; P ~20-100 mTorr; To increase the deposition rate one should increase P, but after a certain threshold the rate decreases due to scattering upon gas atoms or molecules

Sputtering systems

RF sputtering

Pros: not limited to conductive materials

- Negative self-bias due to mobility difference
- Higher ionization level; electrons stay longer in plasma

FIGURE 2.8 Two electrode set-up (diode) for RF ion sputtering or sputter deposition. For ion sputtering, the substrates are put on the cathode (target); for sputter deposition, the substrates to be coated are put on the anode.

Sputtering systems

Ion-Beam Sputtering

- I and V controlled independently
- Angle of incidence can be changed

1 J/pulse; 3-5 J/cm² several targets → many-component materials tailor-made properties

a.

on-axis

- + stoichiometry
- particles

off-axis

- + less particles
- stoichiometry

- MC2- PLD "Twin" system

- MC2- PLD "Calas" system

Ceramic Films Deposited by Pulsed Laser Methods

Property	Applications	Materials
High-temperature superconductivity	Microwave filters and delay lines, digital electronics, sensors	YBa ₂ Cu ₃ O ₇ , Tl ₂ Ca ₂ Sr ₂ Cu ₃ O Nd _{1.85} Ce _{0.15} CuO ₄
Ferroelectricity	DRAM capacitors, nonvolatile · RAMS, optoelectronics, microwave devices	Pb(Zr)TiO ₃ , (Sr, Ba)TiO ₃ , (Sr, Ba)Nb ₂ O ₆ , LiNbO ₃
Ferrimagnetism	Circulators, phase shifters, magnetic recording, antennas	BaFe ₁₂ O ₁₉ , Y ₃ Fe ₅ O ₁₂ , (Mn,Zn)Fe ₂ O ₄ , Li ₂ FeO ₄
Electrochromic effects	Optical modulators, sunroofs, sensor protection	WO ₃ , MoO ₃ , V ₂ O ₅
Electro-optical effects	Transparent conductors, solar energy, photovoltaics	F-doped ZnO ₂ , In ₂ O ₃ /SnO ₂ , (La, Sr)CoO ₃
Piezoelectricity	Microelectrical-mechanical (MEM) devices	Pb(Zr)TiO ₃
Giant magnetoresistance	Magnetic recording head field sensors	(La, Ca)MnO ₃
Thermal and corrosive stability	Oxidation and thermal protection coatings for turbine blades	Y-ZrO ₂ , MgAl ₂ O ₄
Friction and wear	Hard, low-friction, wear-resistant coatings	MoS ₂ , BN, SiC, diamond-like carbon
Biocompatibility	Prostheses, hip/knee implants	Hydroxylapatite, Al ₂ O ₃

From D. B. Crissey, J. S. Horwitz, P. C. Dorsey, and J. M. Pond, Laser Focus World, p. 155, May (1995).

Pulsed-Laser Ablation

Pulsed-Laser Ablation

Laser ablation with conventional lasers (Nd:Yag, CO2...):

- -The laser pulses are absorbed if their wavelength is coupled with the material.
- -The absorbed energy is transferred into heat
- -The heat vaporizes the material and there is local ablation Cons: The quality of ablation depends strongly on the laser wavelength.

Femtosecond laser:

- -The photon density is so high at focus that a single electron can absorb several photons
- -The absorbed photons allow electrons to reach the ionization-energy levels
- -The ejected electrons hit other atoms, and amplify ionization
- -All the energy is evacuated with the electrons and a cold plasma remains at the machined spot
- -The cold plasma expands from the sample

All this happens in a few femtoseconds.

There is no time for heat to propagate over more than a few nanometers.

Pros for machining:

- -No thermal damage: High machining quality, heat sensitive material machining
- -High accuracy: down to 100nm
- -No wavelength dependence: any material can be ablated