Thin Film Deposition by

!'_ Sputtering and PVD

Essential Step of Modern
High Technology
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Fundamentals of Film Deposition

s Gas Kinetics

Have a good vacuum !
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d : molecular diameter,

»n :concentration of the gas,

P :pressure, T : temperature

P(mbar) A (cm) CO(I Ilis/,isns ﬂle:] I()'l'}g:::gs) Monolayer /s
1 7-103 7-109 3-10% 3-10°
103 7-100 7-103 3-10v7 3-102
106 7-103 7-1Q0 3-1014 3-101
10° 7-106 7-1073 3-101 3-104




Fundamentals of Film

i Deposition

= Thermodynamics

Thermodynamic Gibbs potential G,
dG =-SdT +VdP
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,-L Deposition

Fundamentals of Film
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Physical Vapor Deposition

PVD involves the following sequence of steps:

1) the material is converted into vapor by heating;
2) the vapor is transported from its source to the substrate in a vacuum

3) the vapor condense on the substrate and forms the thin film.

The advantages of PVD by evaporation are;

1) high purity of the thin film thanks to the high-vacuum environment;

2) no substrate damage from impinging atoms during the thin-film formation
(unlike sputtering that produces some damage because of high-energy
particles);

3) high deposition rates;

4) relatively small substrate heating.



Physical Vapor Deposition (PVD)
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Physical Vapor Deposition

= Vacuum Chamber
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Physical Vapor Deposition
o Uniformity
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Figure 3-6 Film thickness uniformity for point and surface sources. (Insert) Geometry of
evaporation onto parallel plane substrate.

Uniformity
» Lower deposition rate gives better uniformity, but increases risk for

contamination in low-vacuum chambers.

» Larger distance from the source to the substrate improves uniformity,
but also lowers the deposition rate.

» Rotating holder improves uniformity



Physical Vapor Deposition
o A”OYS

When evaporating alloys
the composition changes
with time of evaporation

A X — a B

Fic. 4.6.2. Phase diagram for systems with a complete series of solid solu-
tions (P = const.). Example: A = Ag, B = Au, T, = 960°C, Ts = 1063°C
(irom M. Hansen, see ref. on p. 100).

One can compensate
for the changes

Figure 4.5 Alloy evaporation with
BxGI-J{ continuous feed.



Physical Vapor Deposition

* s Co-evaporation
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Physical Vapor Deposition

= Deposition Rate

» The deposition rate depends on the position and orientation of the
substrate in the chamber.

» The evaporation rate [ is the rate at which a material vaporizes.
It can be calculated according to the equation :

F{ = }mﬂ.ﬁﬁﬁﬁ,(?’)[ﬁn]

cm 8

where M is the molecular mass, Pv is the vapor pressure,
and T is the temperature.

« A reasonable deposition rate (0.1 mg/cm? s) requires a vapor pressure
above 102 torr.

» Refractory metals, such as W, need temperatures in excess of 3000°C
to reach such a vapor pressure. Other metals, for instance Au, Ag, Cu, In,
require much less heating.



Physical Vapor Deposition
» Sources

"""""" smal » Alloying of material with boat
(Al-W)
» Metals can wet boat

u Possible contamination from
boat or crucible
CRAUCIBLE

CRUCIBLE WITH BASKET

Resistive boats: refractory metals W, Ta, Mo
ceramic crucible or ceramic coating



Physical Vapor Deposition

= E-Beam Evaporation

f » Heat conduction of the hearth limits
7 temperature
e n.;w“ Filanint ook + No reaction between the hearth and the
evaporated material; many materials can
Figure A1.2.1. Electron beam heated evaporation source. be evaporated, like W, Mo, Al,O,, SIO,

High power density: 10 kV, 1.5A, 0.2-1cm? — 15-75 kW/cm?
thermal conduction + evaporation + electron reflection + radiation losses



Physical Vapor Deposition

= Web Coating 4000 miles? fyear (packaging 60%)

Problems: plastic film can melt if the deposition rate (=energy flux) is too high

Clean and high-density vapor flux
in e-beam FPVD systems
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Sputtering

The impact of an atom or ion on a surface produces sputtering from the

surface as a result of the momentum transferfrom the in-coming
particle. Unlike many other vapor phase techniques #here /s no melting
of the material.
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History of Sputtering

= The v)erb to SPUTTER originates from Latin SPUTARE (to blow one’s
noise).

s Grove (1852) and Pliicker (1858) were first to report vaporization and
film formation of metal films by sputtering.

= Key to understanding sputtering was discovery of electrons and positive
ions in low pressure gas discharges and atom structure (J.J. Thomson,

Rutherford), 1897-- _
http:/Avww.gencoa.com#iechivhatsputtering.html



‘L Sputtering vield

Sputiering Yield of Elements ai 500 ¢V

Gas He Me Ar Kr Xe
Element
Be 0.24 0.42 051 0.48 035
C 0.07 —_ 012 0.13 017
Al 0.6 0.73 1.05 0.9% 0.52
Si 0.13 0.48 0,50 0.50 0,42
Ti 0.07 0.43 0.51 0.48 0.43
¥ 0.06 .48 0.65 0.62 0.63
Cr 017 0.99 .18 1.39 1.55
Cu 0.24 1.80 2.35 2.35 2.05
F;I 015 0.8% 1. 10 1.07 1.0
. 0.16 1.10 1.45 1,30 1.22
MNh 0.03 0.33 0.60 0.55 0.53
Mo 0.03 0.48 (.80 0.87 0.87
Pd 0.13 1.15 2.08 2,22 .23
Ap 0.20 1.77 3.2 3.27 3.32
Ta 0.01 0.28 0.57 0.BY 0.88
w 0.0 0.28 0.57 0.91 1.01
Re 0.01 0.37 0.87 1.25 _
Os 0.01 0.37 0.87 1.27 1.33
Ir 0.01 0.43 1.01 1.35 1.56
P 0.03 0.63 1.40 1.82 1.93
Au 0.07 1.08 2.40 3.6 01
Au 0.10 1.3 2.5 — 7.7
Ph 1.1 — 2.7 - —
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Sputtering

Magnetron sputtering
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hitp:/Avww.angstromsciences.comitechnology/sputtering.htm



Sputte q Ng  Imwotanttattefim

is continuous at the step

http: ey dimes tudelft.nlf

= Step coverage

CVD Sputtering  Evaporation

i

wineey oxfordplasma.com



i Sputtering

Pros:

» Good coating and step coverage

» Preserves stoichiometry of multi-component compounds
» Good adhesion

» Majority of materials, ceramics, and refractory metals

cons:

» Relatively low deposition rates

» Substrate heating

» Targets wear out non-uniformly — costs
« Gas atoms may be incorporated in film



Sputtering systems

DC glow discharge

Power +
Supply

Cons: limited to conductive materials
Cathode

[ (Target)
:‘; Vdc ~ 500-5000 V; P ~20-100 mTorr,
| | To increase the deposition rate one should

increase P, but after a certain threshold the

g0 e F'la-*'""a rate decreases due to scattering upon gas
— T | atoms or molecules
/ = %ubstra:&

Chamber

Figure A3.0.1. Schematic of a dc glow discharge
sputtering system.



Sputtering systems

RF sputtering Pros: not limited to conductive materials
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FIGURE 2.8 Two electrode set-up (diode) for RF ion sputtering or T

sputter deposition. For ion sputtering, the substrates are put on the
cathode (target); for sputter deposition, the substrates to be coated are CAPACITIVE COUPLING
put on the anode. Figure 45 Inductively and capacitively coupled tubular RF plasma reactors.




Sputtering systems

lon-Beam Sputtering

Pros:
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Pulsed-Laser Deposition

1 J/pulse; 3-5 J/icm?
several targets — many-component materials
tailor-made properties

- X ”-"""’ :
Vacuum Chamb KON, Substrate

) saqte *
Quartz lens / Heater Y

O\ Plume
1 )
] \ " Target
Laser beam
% Focal point
Aperture Quartz window O .
% 7
5 - a ’ Target holder
xygen inle
vgeniniee—— || J| J
L |=—Valve

T~

1
pans b To vacuum pumps



Pulsed-Laser Deposition
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Pulsed-Laser Deposition

E

- MC2- PLD “Calas” system




Pulsed-Laser Deposition

Ceramic Films Deposited by Pulsed Laser Methods

Property

Applications

Maternials

High-temperature
superconductivity

Ferroelectricity
Ferrimagnetism
Electrochromic effects
Electro-optical effects
Piezoelectricity

Giant magnetoresistance

Thermal and corrosive
stability

Friction and wear

Biocompatibility

Microwave filters and delay

YB&;’CB HDT‘ TI ICE 2 Sl.' Zcu 1 D: .-

lines, digital electronics, sensors  Nd, 4.Ce, ,sCu0,

DRAM capacitors, nonvolatile

RAMS, optoelectronics,
microwave devices

Circulators, phase shifters,
magnetic recording, antennas

Optical modulators, sunroofs,
Sensor protection

Transparent conductors, solar
energy, photovoltaics

Microelectrical-mechanical
(MEM) devices

Magnetic recording head field
SENSOrs

Oxidation and thermal
protection coatings for
turbine blades

Hard, low-friction,
wear-resistant coatings

Prostheses, hip/knee implants

. Pb(Zr)TiO,, (Sr, Ba)TiO,,

(Sr, Ba)Nb,O,, LiNbO,

BH.FCHDH. YaFﬂle:‘
(Mn,Zn)Fe,0,, Li,FeO,

WO,, MoO,, V,0,

F-doped ZnQ,, In,0,/Sn0,,
(La,Sr)Co0O,

PHZr)TiO,

(La, Ca)MnO,

Y-ZrO,, MgAl,O,

MoS,, BN, SiC, diamond-like
carbon

Hydroxylapatite, Al,O,

From D. B. Crissey, J. S.

May (1995).

Horwitz, P. C. Dorsey, and J. M. Pond, Laser Focus World, p. 155,



Pulsed-Laser Ablation

Absorption
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Pulsed-Laser Ablation
I

_ Laser ablation with conventional lasers (Nd:Yag, CO2...):

-The laser pulses are absorbed if their wavelength is coupled with the material.
-The absorbed energy is transferred into heat

-The heat vaporizes the material and there is local ablation

Cons: The quality of ablation depends strongly on the laser wavelength.

Femtosecond laser.

-The photon density is so high at focus that a single electron can

absorb several photons

-The absorbed photons allow electrons to reach the ionization-energy levels
-The ejected electrons hit other atoms, and amplify ionization

-All the energy is evacuated with the electrons and a cold plasma

remains at the machined spot

-The cold plasma expands from the sample

All this happens in a few femtoseconds.

There is no time for heat to propagate over more than a few nanometers.

Pros for machining:

-No thermal damage: High machining quality, heat sensitive material machining
-High accuracy: down to 100nm

-No wavelength dependence: any material can be ablated



