Interdiffusion, Reactions, and Transformations in Thin Films

can be quite different as compared to bulk material

An example

$$t \sim L^2 / 4D$$
 D - diffusivity, [cm² / s]

Consider Cu-Ni film couple at 300 °C. D = 3.8 10⁻²⁴ cm²/s

$$t \sim L^2 / 4D = (10^{-5})^2 / 4 \cdot 3.8 \cdot 10^{-24} = 6.6 \cdot 10^{12} s = 200 000 years$$

In reality however, it takes about an hour

Answer: granularity.
The material can easily diffuse along the grain boundaries

Fundamentals of Diffusion

$$j = -D\frac{\mathrm{d}c}{\mathrm{d}x} \quad [D] = \frac{\mathrm{cm}^2}{\mathrm{s}}$$

$$[D] = \frac{\mathrm{cm}^2}{\mathrm{s}}$$

	D [cm ² /s]
H ₂ in O ₂	0.7
CO ₂ in air	0.14
O ₂ in O ₂	0.18
sugar in water	3e-6

In gases:

$$D \sim vl \sim \frac{v}{n\sigma} \sim \frac{v \, k_B T}{P \, \sigma}$$

$$u = BF$$

Mobility B, force F, drift velocity u of ions

Time of equalization
$$t \sim \frac{L^2}{4D}$$

$$D = k_{\rm B} T B$$

Einstein's equation

Diffusion

$$\frac{dN}{Sdt} = -\frac{\langle v \rangle}{6} (n(+\lambda) - n(-\lambda)) = -\frac{\langle v \rangle \lambda}{3} \frac{dn}{dx}$$

$$D = \frac{\langle v \rangle \lambda}{3}$$

$$\langle \Delta r \rangle = \sqrt{2Dt}$$

1-st Fick's law:
$$J = -D\frac{dn}{dx}$$
;

Continuity:

$$dN = [J(x) - J(x + \Delta x)]Sdt = -\frac{dJ}{dx}dtdV$$

$$\frac{dn}{dt} = -\frac{dJ}{dx};$$

2-nd Fick's law:
$$\frac{dn}{dt} = D \frac{\partial^2 n}{\partial x^2}$$

Constant source diffusion (predeposition):

$$n(x,t) = n_0 \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$$

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-x^{2}} dx$$

Dose (atoms/cm2):

$$Q = \frac{N}{S} = \int_{0}^{\infty} n(x,t)dx = \frac{2}{\sqrt{3}} n_0 \sqrt{Dt}$$

Limited source diffusion (Drive-in):

$$n(x,t) = \frac{Q}{\sqrt{\pi Dt}} \exp\left(\frac{x}{2\sqrt{Dt}}\right)^2$$

Diffusion Mechanisms

 $D = D_0 \exp(-E / k_B T)$ (activation mechanism for diffusion)

Lattice:

$$D_L \approx 0.5 \exp(-17T_m/T) [cm^2/s]$$

Grain boundary:

$$\delta D_{GB} \approx 1.5 \cdot 10^{-8} \exp(-8.9 T_{m} / T) [cm^{3}/s]$$

Dislocations:

$$A_DD_d \approx 5.3 \cdot 10^{-15} \exp(-12.5T_m / T) [cm^4/s]$$

Surface:

$$D_s \approx 0.014 \exp(-6.5T_m/T) [cm^2/s]; T_m/T>1.3$$

$$\dot{n}_L = D_L l^2 (dC/dx)$$
 $\dot{n}_{GB} = \delta D_{GB} l (dC/dx)$
 $\dot{n}_d = A_d D_d l^2 \rho_d (dC/dx)$

Comparison

occurs in practice

Diffusion due to GB

Compound Formation

Flux into interface = $C_{\alpha}v - D_{\alpha}(dC_{\alpha}/dx)_{int}$

Flux away from interface = $C_{\gamma}v$.

$$v = \frac{dX}{dt} = \frac{D_{\alpha} \frac{dC_{\alpha}}{dx}}{C_{\alpha} - C_{\gamma}}$$

$$\frac{dX}{dt} = \frac{D_{\alpha}(C_{A} - C_{\alpha})^{2}}{2X(C_{\alpha} - C_{\gamma})C_{\gamma}}$$

$$X = \frac{[D_{\alpha}(C_{A} - C_{\alpha})^{2}]^{1/2}t^{1/2}}{[(C_{\alpha} - C_{\gamma})C_{\gamma}]^{1/2}}$$

after integration

$$X_{\gamma} \sim a \sqrt{t} \exp\left(-\frac{E_p}{RT}\right)$$

diffusion-limited growth can be also chemical-reaction-limited ~t

Thermal Oxidation of Si

(gate-oxide dielectric for field-effect transistors)

$$Si(solid) + O_2 \rightarrow SiO_2(solid)$$

$$Si(solid) + 2H_2O \rightarrow SiO_2(solid) + 2H_2$$

Oxidation involves:

- transport from the gas
- diffusion of O₂ through the growing solid oxide film
- chemical reaction at the oxide-Si interface

$$egin{aligned} oldsymbol{J}_1 &= oldsymbol{h}_Gig(oldsymbol{C}_G - oldsymbol{C}_0ig) \ oldsymbol{J}_2 &= oldsymbol{D} ig(oldsymbol{C}_G - oldsymbol{C}_0ig) / oldsymbol{d}_0 \ oldsymbol{J}_3 &= oldsymbol{k}_S oldsymbol{C}_i \end{aligned}$$

D: diffusion through SiO₂

 d_0 : thickness of oxide

h_c: mass-transport

kg: reaction rate

Oxygen

 C_G : in the gas

C₀: gas/SiO₂

C_i: SiO₂/Si

from condition $J_1 = J_2 = J_3$:

$$C_i = \frac{C_G}{(1 + \boldsymbol{k}_S / \boldsymbol{h}_G + \boldsymbol{k}_S \boldsymbol{d}_O / D)}$$

$$\frac{d(d_0)}{dt} = \frac{k_s C_i}{N_0}$$

$$\frac{d_0}{A/2} = \sqrt{1 + \frac{t + \tau}{A^2/4B}} - 1$$

$$A = 2D(1/h_G + 1/k_S)$$

$$B = 2DC_G I N_0$$

$$\tau = (d_i^2 + Ad_i)/B$$

 d_i if initial oxide existed

Si Oxidation Problems

Oxide expansion

Oxide quality issues:

- Breakdown voltage 5-10 MV/cm
- Leakage
- Trapped charges

Doping

By thermal diffusion

By ion implantation

By neutron transmutation $^{30}\text{Si} + \text{p} \rightarrow ^{31}\text{P} + \text{p}$

Mixing Materials

Co-evaporation

- requires accurate control over individual non-constant deposition rates (unless expensive Knudsen cells in MBE) Multilayers + annealing

- + simple & cheap
- time consuming

Phase Transformations

Amorphous phase → crystalline

Рис. 2.16. Зависимость температуры перехода низкотемпературной аморфной фазы в кристаллическую от толщины пленок Fe, Bi, Yb и Ga [218, 229]

cobalt disilicide CoSi₂

Mass Transport Under Driving Forces

Probability to escape via thermal activation:

$$P = \omega \operatorname{an} \exp \left(-\frac{W - \frac{eaE}{2}}{kT} \right)$$
attempt frequency

Electro-migration

gradual displacement of the metal atoms of a conductor as a result of the current flowing through that conductor.

Concerns: circuitry failure

- open circuit where voids appear
- short circuit where hillocks are built
- failures take time to develop, and are therefore very difficult to detect until it happens.

$$\tau \sim \frac{C}{j^n} \exp\left(-\frac{E_a}{kT}\right), \quad E_a \sim 1 \text{ eV}$$

mean lifetime of a line subject to electro-migration Black's equation; n=2

Electro-migration can be prevented by:

- 1) proper design of the device such that the current densities in all parts of the circuit are limited;
- 2) increasing of the grain sizes of the metal lines such that these become comparable to their widths
- 3) deposition of thin films placed over the metal lines to suppress extrusions caused by electro-migration.