E-beam lithography and design principals

JEOL e-beam lithographer

Exposing a matrix of dots

- An electrostatic beam-blanker controls the duration of the current pulse at etch point
- The dose (energy or charge deposited by unit surface) is a function of the pulse duration, the current and the point-to-point distance

Spot size

- Increases with the current intensity and is a function of other parameters: the lens used, the aperture, the acceleration voltage, etc.
- Backscattered electrons also contribute to the dose
- The effective electron beam has a Gaussian-like shape
- Proximity effect has to be taken into account is some situations
- Frames and stage motion
 - To limit distortion, the lithographer only exposes in small fields
 - A high precision laser interferometer enables reproducible stage motion.

Drawing principles

Pattern file system and scripts

- Scripts are used to position patterns and form the desired wafer/mask layout (JDF)
- These scripts also handle the dose setup, dose modulation, alignment mark detection, etc.
- Scripts are used to schedule and set various parameters for the exposure (SDF)
- Pattern conversion
 - Drawings must be converted to a JEOL specific format from a standard DXF format (see specific instructions)
 - Layers: the different layers present in the DXF file will be extracted and filed independently in the JEOL pattern format
 - Layer "0" can be used for drawing aids but not for patterns that should be exposed

Dose modulation

- The exposure can be modified for different parts of a drawing using the "dose modulation" capabilities of the system
- A dose modulation table (in the JDF script) is used to convert the color of the drawing elements into modified exposure dose
- The dose modulation table indicates the percentage to be added/subtracted from the nominal dose
- Multiple current exposure

- Most tasks use two currents to reduce exposure time:
 - A low current (~0.1nA) for high resolution patterns
 - A high current (~10nA) for large area exposure
- In any case, a slight misalignment has to be expected between the low and high current exposure
- This efficient way of planning drawings requires
 - To used one layer per current
 - To provide sufficient overlap between drawing parts in different layers (a few microns)
- Multiple exposure and alignment marks
 - The lithographer can perform an automatic alignment on marks present on the sample
 - This permits multiple fabrication steps or a better alignment for exposures with different currents
 - The marks must have sufficient contrast (ex. 200nm Au film on Si)
 - Careful considerations must be accorded to alignment scheme at drawing stage

Using AutoCAD

Use only <u>closed</u> POLYLINE to define the patterns

- For compatibility with the JEOL format, do not use lines, rectangles, arcs or text.
- The use of the "c" key word is recommended to ensure the closure of the POLYLINE
- Do not create POLYLINEs with to many vertices (though the limit is rather large)
- Create small POLYLINEs that can be colored differently for dose modulation purposes
- Control the overlapping of drawing elements
 - Remember that every POLYLINE will be exposed
 - Overlapping areas will receive the cumulative dose of all overlapping drawing elements
- Center the drawing on the origin (0,0) or an other known point of the drawing (ex. upper left corner)

Drawing tips

- Various OSNAP (F3 key to toggle on/off) modes are available to point to vertices, end-points, mid-points, etc. See also "Tools/Object Snap Settings" to set defaults.
- ORTHO mode limits drawing/motion to vertical or horizontal (F8 key)
- "Modify/Properties" function shows and enables to modify various properties (color, layer, etc)
- There are various measuring tools
 - Use DIST to measure distances and AREA for areas
 - The DIM set of commands is meant to draw dimensions on technical drawings

- Coordinates can be entered from the keyboard
 - X,Y for absolute cartesian coordinates
 - **Radius < Angle** for polar coordinates
 - Prefix (a) indicates relative coordinates
- Filters can be used to refer to partial coordinates
 - When prompted for a coordinate, use the **.x** filter to use only the x coordinate of the point you will select next.
 - Other filters are: .y, .z, .xy, .xz, .yz
- ✤ Lock or hide layers to make drawing easier
- ✤ There are two mode of window selection
 - dragging from left to right selects only elements that are completely included in the selection window
 - dragging from right to left selects all elements that are partly or completely included in the selection window
- In window selection
 - Use key "r" to switch to "remove selected object"-mode and "a" to return to "add selected object"-mode

Drawing tools

Editing vertices

- Select the object and then select a vertex. Drag it to move or enter new coordinates (absolute or relative)
- ✤ STRETCH command
 - Enables to move a set of vertices at once
 - When requested, select the vertices you want to move by using a crossing window (drag from right to left)
- ARRAY command
 - Creates rectangular or polar (circular) arrays of select drawing elements
- The function EDIT/COPY (\neq COPY command)
 - It copies elements in the usual clipboard memory. They are rendered using the function EDIT/PASTE as a block. Not very practical... but when you want to move a whole lot of things from one drawing file to an other
 - Use EXPLODE command to return to the individual elements.