Adaptive downsampling of traces with FPGAs

ANTON FREDRIKSSON LUKAS RAHMN

2020-06-27

- Why Compression?
- Large scale physics experiment
- Field-Programmable Gate Array (FPGA)
- Signal traces

Icons by https://www.flaticon.com/authors/dimitry-miroliubov

- Why Compression?
- Large scale physics experiment
- Field-Programmable Gate Array (FPGA)
- Signal traces

- Why Compression?
- Large scale physics experiment
- Field-Programmable Gate Array (FPGA)
- Signal traces

FPGA

Processor

- Why Compression?
- Large scale physics experiment
- Field-Programmable Gate Array (FPGA)
- Signal traces

Our work

- A novel lossy trace compression algorithm.
- Compression/Decompression software
- FPGA firmware implementing the compression.

Compressed trace signal

Our website

- A webutility to demonstrate compression.
- Runs the same code as PC software.

http://fy.chalmers.se/subatom/ads/compressor/

Ratio selection?

The downsampling ratio is always a power of two.

Only three ratio changes are allowed

- Increase by doubling
- Keep constant
- Decrease by halving

- Local decision
- Compare the difference of averages to this standard deviation.
- Checked for all possible ratios
- Length of average depend on ratio

• Local decision

ightarrow

- Compare the difference of averages to this standard deviation.
- Checked for all possible ratios

• Local decision

ightarrow

- Compare the difference of averages to this standard deviation.
- Checked for all possible ratios

• Local decision

ightarrow

- Compare the difference of averages to this standard deviation.
- Checked for all possible ratios

- Local decision
- Compare the difference of averages to this standard deviation.
- Checked for all possible ratios

- Local decision
- Compare the difference of averages to this standard deviation.
- Checked for all possible ratios

Global decisions

Encoding

To encode the sum and ratio a pre-existing lossless compression scheme is used called DPTC [1].

Difference predicted trace compression (DPTC)

Compression

Recap

- Compression is important
- Significance testing
- Try the website with your own traces
- All source code will be made available at <u>http://fy.chalmers.se/subatom/ads</u>

Recap

- Compression is important
- Significance testing
- Try the website with your own traces
- All source code will be made available at <u>http://fy.chalmers.se/subatom/ads</u>

Thank you for listening!

http://fy.chalmers.se/subatom/ads/compressor/

Trace compression

This website serves to demonstrate a novel lossy trace compression algorithm developed for data acquisition systems employed in physics experiments. Compression is achived by adaptivly downsampling the trace where regions of interest are kept at an high resolution whilst regions dominated by noise is downsampled. Regions of interest are defined as sections of the trace where signal deviations are significant compared to the estimated standard deviation of the noise. For a more detailed principle of operation please consulte our Master's thesis.

To get started either select one of the test traces or upload your own trace file. This file should contain a list of integers representing the samples of the trace. The system is quite linient so formats that approximates JSON or CSV should be acceptable.

Realworld example

UPLOAD TRACE FILE

NEXT

Trace compression

General settings

Sample bits			
16			
viax ratio			

Standard deviation estimation

)				
stimate before o	ompression			
)				
nitial STD guess				
8.0				
rigger level				
3				
nous				N

Look-ahead

- Ratio selection rules implies look-ahead, i.e future samples must be inspected to decide ratio.
- System always increases ratio if possible
- Local decision by significance testing.

The result $_{K=3}$

Label	Category	Details	Traces #	Samples $\#$	σ	DPTC	ADS	ADS + DPTC
						Bits/Sample $$		Sample
a		core signal	40	5000	2.16	3.89	1.70	0.79
\mathbf{b}	γ in segmented BEGe	segment 1	40	5000	2.16	3.86	1.81	0.85
с		segment 5	40	5000	2.21	3.91	1.81	0.85
d	terte	Ionisation chamber	200	200	71.2	9.16	1.84	1.53
e	n/γ discrimination	<i>n</i> -det, anode	200	200	4.88	5.36	2.67	1.72
f		<i>n</i> -det, cathode	200	200	6.20	5.71	2.48	1.59
g	position-sensitive	α -particles	50	1000	29.7	7.81	1.13	0.81
\mathbf{h}	Si pin-diode	^{40}Ar	50	1000	6.36	5.58	2.28	1.35
i		no signal split	100	200	5.30	5.55	3.88	2.51
j	γ from ^{137}Cs	signal split 1:2	100	200	3.90	5.08	3.46	2.15
k	in $LaBr_3$	signal split 1:4	100	200	3.23	4.81	3.20	1.95
1		signal split 1:8	100	200	3.05	4.65	2.78	1.69
m		350V	100	600	0.25	1.67	1.90	0.62
n	cosmic μ in $LaBr_3$,	400V	100	600	0.25	1.67	2.22	0.74
0	varying HV of PMT	450V	100	200	4.28	5.55	4.55	3.01
р	cosmic μ in $LaCl_3$,	CAEN DT5730	100	400	3.88	5.00	2.50	1.49
\mathbf{q}	different digitizers	CAEN DT5751	100	400	0.86	2.72	2.95	1.28
r		all values 0	1	1000	0	1.51	0.34	0.06
s	Flat traces	all values 10	1	1000	0	1.51	0.34	0.09
\mathbf{t}		all values 100	1	1000	0	1.51	0.34	0.10

The result $_{K=2}$

Label	Category	Details	Traces #	Samples $\#$	σ	DPTC	ADS	ADS + DPTC
						Bits/Sample $$		Sample
a		core signal	40	5000	2.16	3.89	4.83	2.08
b	γ in segmented BEGe	segment 1	40	5000	2.16	3.86	4.76	2.07
с		segment 5	40	5000	2.21	3.91	5.06	2.20
d		Ionisation chamber	200	200	71.2	9.16	5.41	4.08
e	n/γ discrimination	n-det, anode	200	200	4.88	5.36	5.48	3.06
f		<i>n</i> -det, cathode	200	200	6.20	5.71	5.42	3.06
g	position-sensitive	α -particles	50	1000	29.7	7.81	2.93	1.93
\mathbf{h}	Si pin-diode	^{40}Ar	50	1000	6.36	5.58	4.77	2.60
i		no signal split	100	200	5.30	5.55	5.61	3.34
j	$\gamma { m \ from \ }^{137}Cs$	signal split 1:2	100	200	3.90	5.08	5.76	3.17
k	in $LaBr_3$	signal split 1:4	100	200	3.23	4.81	5.75	3.03
1		signal split 1:8	100	200	3.05	4.65	5.83	2.99
m		350V	100	600	0.25	1.67	3.74	0.95
n	cosmic μ in $LaBr_3$,	400V	100	600	0.25	1.67	4.41	1.13
0	varying HV of PMT	450V	100	200	4.28	5.55	5.80	3.58
р	cosmic μ in $LaCl_3$,	CAEN DT5730	100	400	3.88	5.00	5.86	3.00
q	different digitizers	CAEN DT5751	100	400	0.86	2.72	5.67	2.14
r		all values 0	1	1000	0	1.51	0.34	0.06
s	Flat traces	all values 10	1	1000	0	1.51	0.34	0.09
t		all values 100	1	1000	0	1.51	0.34	0.10

FPGA Family	Part number	Max frequency	LUT usage	FF usage
Zynq-7000	xc7z020-1	$182 \mathrm{~MHz}$	1560	1246
Spartan-7	xc7s75-1	182 MHz	1559	1246
Spartan-6	xc6slx9-2	$154 \mathrm{~MHz}$	1508	1172
Virtex-4	xc4vlx15-12	$158 \mathrm{~MHz}$	1980	1183

- 14 bit wide ADC
- Max ratio of 64

Standard deviation estimator

Compressor details