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Abstract

A novel description of the interaction of quantum optical systems with a single one-photon wave pack-
et in terms of a generalized master equation is introduced. A corresponding quantum Monte-Carlo
wavefunction simulation algorithm can be obtained from the driven system approach [H. J. Carmichael,
Phys. Rev. Lett. 70, 2273 (1993); C. W. Gardiner, ibid. 2269 (1993)].

1. Introduction

Over the past five years quantum information [1, 2] has emerged as a novel field in quan-
tum theory and computer science with a tremendously stimulating effect on both theoretical
and experimental efforts. It now serves as an umbrella for a whole host of topics ranging
from quantum cryptography to quantum computing [1—4].

In a quantum optical implementation for a quantum network photon wavepackets can
serve as carriers of quantum bits for quantum information processing and communication (a
“flying quantum bit”). The quantum information can be encoded, for example, in the polar-
ization state of single photon wave packets, or can be represented by a superposition state
of photon wave packets with different definite numbers of photons [1—3]. In the photonic
channel as discussed in Ref. [5], for example, the qubit is encoded in a superposition of the
vacuum state and a single photon wavepacket. Quantum logical operations on photon wave-
packets can be realized by nonlinear optical elements which operate on the single photon
level, as for example in the cavity QED implementation of the phase gate [8].

Interestingly enough relatively little has been achieved in the way of a theoretical descrip-
tion of the interaction of one-photon wave-packets with isolated quantum systems such as
cavities or atoms. In this paper we will develop a language and formalism to describe the
propagation and nonlinear interaction of photon wavepackets in a quantum optical network.
Our starting point is the standard model of quantum optics, where a system of interest is
coupled to a heat bath of bosonic modes representing the radiation field [7]. The radiative
modes of the heatbath serve as input channels through which the system is driven, and as
output channels which allow the continuous observation of the radiated fields. In the pre-
sent case, a relevant example is cavity QED [8—10, 13] where an atom strongly coupled to
a high-Q cavity mode represents the system, and the optical cavity mode couples to the
outside radiation modes by a partially transmitting mirror. The familiar formalism devel-
oped in this context in quantum optics is tailored to the case where the incident light field
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is in a coherent state (representing laser light) or a state with Gaussian statistics (thermal or
squeezed light). In contrast we are interested here in a situation where the input state of the
light field driving the system consists of photon wavepackets with small but definite num-
bers of photons which interact via the system and leave through the output channels. Thus,
this scenario represents a particular example of a quantum optical system which is strongly
driven by a non-classical light field of few-photon wavepackets. We can describe this situa-
tion from the two points of view.

First, we can specify the state of the incident radiation field directly, for example in
terms of the infinite hierarchy of input correlation functions, and in a nonlinear interaction
the system dynamics will be sensitive to this infinite sequence of correlation functions. In
the case of N-photon wavepackets the situation is significantly simplified, however, due to
the fact that the normally ordered field correlation functions of order larger than N are
identically zero. As a result, this will allow us to derive a finite hierarchy of coupled den-
sity matrix type equations describing the system response.

A second point of view is to eliminate the incident light field in favor of the dynamics of
the source which generated this field. A formalism to describe the unidirectional coupling
of two quantum systems, where the first system represents the source and a second corre-
sponds to the driven system of interest, has been developed in seminal papers by CARMI-
CHAEL and GARDINER ([6], for precursors of this work see [11, 12]). In the present case, the
sources will be generators of single photon wavepackets of a given shape [10, 13, 14]. Both
of the above points of view are, of course, equivalent. In the present paper, we will develop
the formalism from both of these perspectives, and compare the resulting master equations.
In this paper we will mainly consider the case of single photon wave packets, and briefly
present the generalization to the two-photon case. Detailed applications of this formalism
will be presented elsewhere.

The paper is organized as follows: we will start out with a rederivation of a master
equation for a reservoir state described by a one-photon wavepacket. We will illustrate the
practicality of the method using the interaction of a two-level atom with a one-photon
wavepacket. We will then proceed and proof the validity of our approach by relating it to
the cascaded systems approach. Finally, we will discuss briefly an extension to the case of
two-photon wavepackets which is of particular interest to quantum computation.

II. One Photon Wave Packets

Within the limits of present day technology one-photon wave-packets are very convenient
carriers of quantum information between distant nodes of a quantum network. This is
mainly due to the fact that optical fiber technology is extremely well developed and that
photons are relatively easy to deal with. For instance quantum cryptography experiments
already make use of single photons generated by parametric down conversion [1—4]. Infor-
mation may be encoded in the polarization state of the photon which thus takes on the role
of a flying quantum bit. While the practicality of sources based on parametric downconver-
sion is somewhat limited due to insufficient external control over the generation process
novel schemes which would allow the tailoring of one-photon wavepackets are already
underway [13]. It has been a common practice in the past to content onseself with a rather
simple description of the photons in terms of single-mode Fock-states. Clearly this suffices
for many purposes but a more rigorous dynamical description of the interaction may be
required for a realistic account of quantum networks.

We now consider the interaction of an isolated quantum optical system S, e.g., a resona-
tor or a single atom, and a single one-photon wave packet whose center frequency is close
to one of the resonances of S. We describe the environment our system couples to as usual
by a continuum of harmonic oscillator modes. To keep things as simple as possible we
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consider an interaction in one dimension. Generalization to higher dimensions is straight-
forward but nontrivial. Typical quantum optical system-environment couplings are character-
ized by a Hamiltonian of the following kind

H = Hs + [ do hob' (0) b(o) — i(c + ¢') [ do k(o) (b(w) — b (0)), (1)

where Hy characterizes the system’s internal unperturbed dynamics. The reservoir oscillator
modes are described by bosonic creation and annihilation operators b'(w), b(w) satisfying
standard commutation relations: [b(w), b'(v)] = d(w — v). The reservoir couples to the
system via the system operators ¢, ¢'. In a quantum optical context it is usually permissible
to simplify the coupling by assuming a highly localized interaction which allows us to
neglect the frequency dependence of the coupling constant k(w). Since the bandwidths of
the system resonances are typically much smaller than the spacing between two resonances
we may omit all nonresonant terms from the interaction Hamiltonian. We then arrive at a
dipole and rotating wave approximated description of the interaction which is known to
give a good approximation to the real thing.

Hrwa = Hs + [ do hob'(w) b(w) — i }o dow ko(c'b(w) — b (w) ¢) . (2)

—00

Using a coupling of this form one usually proceeds to derive a Master equation for the
state of the system alone by assuming the environment to be in a simple state, e.g., the
vacuum or a thermal state. Doing so implies a further approximation known as the white
noise limit in which we assume a flat spectrum of the reservoir over the width of a system
resonance. This then yields an equation for the system density operator which is of Lind-
blad form.

If we now wish to consider a state of the reservoir which is time-dependent and thus not
spectrally flat we cannot apply the standard procedure and will thus have to adopt a differ-
ent approach. As mentioned above we are interested in the case where a single one-photon
wave-packet is incident on the system. Clearly this is quite different from the usual reser-
voir picture, as the single photon can be absorbed and thus the state of the reservoir will be
changed. In formal terms we are interested in an initial state of the reservoir of the follow-
ing kind:

¥)g = [ do g(w) bl (@) [vac), (3)
0
where
[ do [g(@)? =1. (4)
0
1I1. Rederivation of the Master Equation

Let us now briefly go through the standard procedure for deriving a Master equation for the
system density operator. In a first step we formally integrate the time evolution equation of
the reservoir modes (A =1):

b(w, t) = —iwb(w, t) + koc(t) . (5)
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Therefore we find

of dw b(w, t) = V27 biy(1) + ko }C dw fdt’ e =0 ¢ (f), (6)

—00 —00 I

where the socalled input-field b;,(r) is an explicitly time dependent Schrédinger picture
operator

but) = | do e @0 blw, 1)/V27. (7)

Note that the two-time commutator of the input field yields a d-function

[bin 1), b, (1)) = Ot = 1) (8)

The previously made singular coupling approximation now allows us to simplify the rhs of
Eq. (6). We may now break down the total field into a free field contribution and radiation
reaction term:

ko | do b, 1) = V2% bin(t) + xe(t) ©)

—00

where % = k3 is the rate of radiative damping. In a next step we can now write down the
equation of motion for an arbitrary system operator X(#) which is defined such that at #y:
X(l()) = X ® lz. We find

X(1) = =i[Ms, X(1)] = [X(2), ¢'(6)] (c(t) + V2% bin (1))
+ (! (1) + V22 b, (1)) [X(1), ()] (10)

In the standard derivation one now uses this equation to arrive at an equation of motion for
the reduced density operator @, defined as

o,(t) = trr0(1) - (11)
To this end we make use of the identity

(X(1)) = w54 r [X(1) 0(00)] = trs [Xo, ()] - (12)
Regarding the initial condition for o(f) we assume a factorzed initial state of the form

o(to) = os(to) @ |¥r) (¥krl, (13)
which is clearly only meaningful if at #, the wavepacket is still at a sufficiently large dis-
tance from the system. Any difference in the final result for the type of Master equation

obtained must necessarily arise from the terms containing the free reservoir field. Special
care will thus be needed when evaluating the following two terms:

s ([X(0), ¢'(1)] bun(1) 0(10)) , (14)

s (b, (1) [X(1), e(r)] o(t0)). (15)
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E.g., substituting the rhs of Eq. (13) into Eq. (14) necessitates the evaluation of b;,(r) |¥g)

for which we find:

bin(t) |¥r) =

1T .
— dow g(w) e @) |yac) . 16
| o) e g (16
—00

Note that g(¢) is actually a function of 7 — #y which implies that ideally g(¢) tends to zero
as ¢ tends to ty. Consequently, Eq. (14) can be recast as

trsi & ((X(7), ¢! (1)] bin(1) 0(10)) = (1) trs v ([X, €] 01 (1)) - (17)
Note the appearance of a new operator 9, (r) defined as
Coi (1) = trg (U(t, 10) 05 ® |vac) (Wr| U'(1, 1)), (18)

with U(t, tp) denoting the propagator corresponding to the total Hamiltonian Hgwa. For
the second term we obtain a similar result

trs & (b}, (1) [X(2), c(t)] 0(t0)) = &*(1) trs v (00, (1) [X, c]). (19)

In order to arrive at a closed system of equations we need an evolution equation for g, (¢).
This is accomplished by again exploiting the identity:

trs (X0, (1)) = trs & (X(2) 05 @ |vac) (Pg]) . (20)

Proceeding as before we arrive at an equation for g, (f) containing all the conventional
terms of a Master equation of Lindblad form with the exception of two additional terms:

s ([X(0), (1)) bin1) 001 (10)) = 0, (21)
trs 4 & (b, (1) [X(2), c(1)] 01 (t0)) = & (1) s (X, €] 0,(1)) . (22)
The operator o,(f) is a genuine density operator and describes the state of a reference

systems that evolves in the presence of an environment in the vacuum state. It is defined in
the usual way as

0,(1) = g (U(t, 10) 05 ® |vac) (vac| U'(1, 1)) (23)
The time evolution of the system S is thus governed by a 4-component system of coupled
equations for two density operators (@,, 0,) of traceclass 1 and a further nonhermitian
operator (9,,) of traceclass 0. We now exploit the fact that the relations derived have to

hold for an arbitrary system operator. Using the cyclic property of the trace operation we
arrive at the following set of equations:

0,(1) = Lo, (1) + Q(1) [0g, (1), '] — (1) [of, (1), ], (24a)
001(1) = Log, (1) — 2%(1) [0,(1), ], (24b)
Qr(t) = L:Qr(t) ) (24C)
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with initial conditions

os(to) = 0,(th) =05, and g (t) =0. (25)

Q(t) = /22 g(¢) is the driving field strength experienced by the system S due to the pre-
sence of a single photon. The Liouvillian £ is given by:

Lo = _i[HSv Q] - %({CTCv Q}+ - ZCQCT) . (26)

Eq. (24a) is almost identical to the equation we would have obtained for a system driven
by a coherent field with the major exception that instead of o, the operator g, appears in
the coupling terms. This is a signature of the fact that the single photon can be lost by
absorption this altering the state of the environment.

IV. Example: Driven 2-Level Atom

To illustrate the utility of the method just presented we now consider the case of a two-
level atom driven by a single one-photon wave-packet. The system is thus well character-
ized by two states |g), and |e), the latter of which decays with a rate of 2. The action of
the Liouvillian is this given by

Lo = —iw[c'c, o] — y({c'c, 0}, — 2coc'), (27)

with ¢ = 0_ and w( the atomic transition frequency. Initially the atom be in its ground
state, i.e., 0,(fo) = |g) (g|]- As a convenient consequence of this we find that o,(r) is time
independent. This implies that we may formally integrate the equation of motion of gy,
which yields:

t
001 (1) = —Jdi' Q*(¢) "D o, (28)
o
t . ,
—[ar QF(f) e Vi)t g (29)
0]

The density operator thus satisfies an inhomogeneous master equation which reads
t
0,(1) = Loy(t) — Jdi' (1, 1) [0, 04], (30)
)
Q(1, 1) = 2Re (Q(r) QF() eV iw0) =1y (31)
We therefore arrive at the following formal solution for g (¢):
t L
0,(t) = 0,(t0) + [0, 0] [df' 1) [ar" Q¢ 1"). (32)
Iy I

If we are interested in the interaction with a wave-packet whose spectral width is consider-
ably smaller than the rate of spontaneous emission we may further simplify the expression
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in Eq. (32). In this limit we make the following ansatz
Q1) =v(t) ™", (33)

where w, is the optical center frequency of the wave-packet whereas v(r) is its envelope
which changes slowly on the timescale given by y~!. Introducing a detuning defined by
A = w, — wy we then find

t

492|g(1)]?
J af (1, ) ~ L8O (34)
y2+4
)
and thus
N 2ylg(1)[*
o,(t) = o,(to) + [0, 0] m . (35)

Note that this result is quite different from the one obtained for a coherent driving where
there would be nonzero off-diagonal density matrix elements. It is also markedly different
from what would be obtained from the interaction with a thermal reservoir with time-vary-
ing temperature due to the obvious dependence on the detuning A.

V. Wave Function Simulations

For sufficiently complex problems a direct integration of the Master equation may not be
the most suitable method of attack for a numerical solution. For a Master equation of
Lindblad type there is a straightforward prescription how a numerical quantum Monte Carlo
simulation algorithm can be implemented. For the type of master equation we have just
derived it is not priori clear whether a simulation algorithm can be found as the system
evolves in a non-Markovian fashion. In principle there exists another approach to describe
the interaction between a small system and a nontrivial input field state which is known as
the cascaded systems approach [6]. The basic idea behind this method is to embed the
system into a larger Hilbert space which also includes the degrees of freedom of the system
which generated this particular input field state.

Suppose we label the system generating the one photon wave-packet A we then have to
consider the dynamics of the compound system A + S 4 R. The coupling between A and S
take place via the harmonic oscillator modes of the environment R now common to both
systems. It is important to assume a onedirectional nature of the coupling between A and S
which is necessary to sustain the picture of system A driving system S. A graphical illustra-
tion of a possible realization is given in Fig. 1.

Fig. 1. Model compound system
where A is a ring cavity whose
output drives system S in a unidi-
rectional fashion.
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If we denote the coupling constant between system A and the reservoir by x,(¢) the
operator mediating the coupling by a and the reduced density operator of the enlarged
system A 4 S by ¢ the following Master equation ensues

0(t) = Lioo(t) + 2 \/24(1) %([ao(t ¢, o(t)a']), (36)
L@ = Lo(1) — i[Ha(t), 0] — %a(1) ({a% o}, —2apa'), (37)

with H4(¢) denoting the (potentially explicitly time dependent) unperturbed internal dy-
namics of the driving system A. The initial state of g is given by the product of the initial
states of systems A and S

o(t) =05 ®0y4- (38)

The state o, needs to be chosen in such a way that in conjunction with the dynamics given
by L the desired input state for system S is generated. If we wish to numerically simulate
the evolution of this system we proceed in the usual fashion by propagating the system in
between state reductions with an effective nonhermitian Hamiltonian

Hett = Ha(t) + Hs — i(%c*c + 2,4(t) ala+2 #1,(1) c‘La) . (39)

State reductions are 1mplemented by applying the operator C(t) = \/xc + /#,(t) a to the
state of the compound system in conjunction with a subsequent renormalization. It now
remains to be shown that we may find a driven system description for the set of master
equations derived in the preceding section. This would reconcile both methods and thus
underpin the validity of the presented Master equation approach.

VI Making the Connection

When having a closer look at Eq. (36) we immediately realize that there are certain terms
which are strongly reminiscent of the additional terms appearing in Eq. (24a). We will now
show that the reduced density operator g§ = tryo obtained from the cascaded systems mas-
ter equation can be adapted to satisfy the same equation as o, introduced in Eq. (11). We
find

oi(1) = )+ 2/ xa(t) 2([0(1 e, @1(0)]) (40)
0(1) = tra(ae(1)) - (41)

Note the explicit time-dependence of the damping rate », which can be accomplished by
manipulating the coupling of system A to the environment. This is already of exactly the
same structure as Eq. (24a). It now remains to find an equation of motion for 9,. Assuming
bosonic commutation relations for a we find:

0,(1) = L,() — tra((#a(1) a + ila, Ha) 0(1))

+ 2 \/%4(t) % tra([c, ao(t) a'] + [a*o(1), c1]). (42)

We are dealing here with an approach that allows us to consider arbitrarily complicated
states to be generated by system A. In order to further simply Eq. (42) we have to make
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further assumptions. The dynamics of system A be therefore such that there is only a
limited supply of energy. The total amount of energy is not to exceed the equivalent of a
single excitation of mode a. Under these circumstances we may drop the last term in Eq.
(42). Moreover, we assume the commutator [a, H,] to be a linear functional of a. This is a
meaningful assumption as higher order nonlinear terms would not contribute due to the fact
that there is at most a single excitation present in system A. We then may write:

0,(1) = L,(1) = (a(t) +if (1)) 8,(t) +2 /(1) % [¢, 00(0)], (43)

0o(r) = tra(a(r) a'). (44)

Note that f(¢) is a complex function which stems from the commutator in Eq. (42). Conse-
quently, for g, () we find:

0o (t) = Log(t) — (22ta(1) + ilf (1) = *(1)]) 0p(7) (45)

If we now finally introduce the formal abbreviation

t
—Jar Gty + (1)
alf) =e , (46)

we may make the following identifications:

00()/|a(t) = o,(1) (47)
8,(1)/a(t) < 00y (1 (48)

2 /D) alt) = Q1) (49)
o:(1) < 0,(1) (50)

It now basically remains to find an explicit model for the hitherto unspecified physical
system capable of generating a single one-photon wave-packet.

VIL Tailoring Wave-Packets

From a purely pragmatic point of view it would suffice to consider a cavity initially pre-
pared in a one-photon Fock state which is then allowed to leak out in a controlled fashion.
The shape of the envelope and its phase could be controlled by modulating the cavity
decay rate and its resonance frequency. While this suffices to generate an arbitrarily shaped
wave-packet in a numerical simulation this approach is somewhat unsatisfactory from an
experimental point of view as such a procedure is exceedingly difficult to implement. It has
however recently been shown by LAw and KiMBLE [13] that optical pumping can be used
to produce single one-photon wave packets with near certainty. Thus there are realistic
physical intra cavity systems that do give rise to essentially the same behavior as a time
varying decay constant or mistuning. We may thus regard such a modulated resonator as a
an effective model of a much more complicated system which is driven externally. It now
remains to derive the explicit time dependence of x(¢) and A(z) for a given desired pulse
shape g(1), cf. also Eq. (49).
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To this end we recall the equation of motion for the mode operator a(t) of such a modu-
lated cavity

a(t) = —(x(r) +id(0) a(t) — /2x(1) ai (1) , (51)

with a;,(¢) describing a vacuum input to the cavity. By way of formal integration we arrive
at the following expression for the field emanating from the cavity

t

Qo (1) = ag (1) — Jz x(t')

)

(1)
g(t)

an(?)dt' +g(t) a(ty) , (52)

where

g(t) = \/2x(t) exp (— JE (2(") +iA(7)) dt’) . (53)

)

If the cavity is initially prepared in a one-photon Fock state we may identify g(¢) as the
complex temporal envelope of a one-photon wavepacket emitted by the cavity.
Any given g(f) may now be expressed in terms of a unique #(f) and A(¢) given by:

#(1) = (Ig(t)|2/2<1 - tft g(f’)zdt’> ; (54)
A) = i(g(r) 8™ (1) — 8(1) §¥(1))/2]g(0)* (55)

VIII. Correlation Functions

A full account of the properties of the driven system requires also a prescription for the
calculation of higher order temporal correlation functions. For interactions describable by a
single density operator alone there exists a well known approach to work out multi-time
correlation functions known as the quantum regression theorem [15]. For most purposes it
suffices to calculate two-time correlation functions which we shall outline briefly here-high-
er order correlation function are obtained by repeatedly applying the same procedure as
below. Suppose we wish to calculate the correlation function

(A(1), B(t1)) = trs(A rg(U(t2, 11) Bo(tr) U'(12, 11))) (56)

where #, > t; without loss of generality. It now remains to work out the evolution equation
for the operator o(#; 11; B) defined as

0,(t; t1; B) = trg(U(t, 1) Bo(t) U'(t, 1)) and o,(11; t1; B) = Boy(t1).  (57)

Using the same techniques as in the preceding sections one can easily show that we
arrive at a set of equations identical to Egs. (24) for a new set of operators
{o,(t; t1; B), 0¢,(t; t1; B), 0,(t; t1; B)} with initial conditions o, (#; t1; B) = Bo,(t;). In
brief this means we obtain a result analogous to the one for the interaction with standard
types of reservoirs. The calculation of two-time correlation function thus reduces to the
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calculation of simple one-time expectation values using the same density operator equations
but with appropriately modified initial conditions. This is in essence what the quantum
regression theorem states.

IX. Two Photon Wavepackets

Two-photon wavepackets are of particular interest for two bit gate operations in distributed
quantum computing. A carrier and a target bit undergo local processing and are then passed
on to the next node or gate [8]. Both bits could be accommodated in the polarization states
of a two-photon wavepacket. It seems reasonable to assume that the approach presented
above will also work for two-photon wavepackets. While this is more or less true the deri-
vation requires some extra care. This is a consequence of the by far more complex nature
of a two-photon wavepacket:

|11U2>R = % J d(u1 J dLUQ g(wl, (UQ) bT(a)l) bt(wz) ‘VaC>7 (58)

which holds in one dimension. For simplicity we have omitted polarization indices. It is
reasonable to assume that g is symmetrical, i.e., g(wi, w,) is the same as g(w;, wp). It
then follows

[dw, [ dos|g(wr, )] = 1. (59)

Going through the same procedure as outlined in Sec. III produces states with an explicit
time dependence such as

bin(t) [W2)g = V2 [ do g,(, 1) b (w) |vac), (60)
where

dv

—iv(t—19)
e w, V). 61
o 8( ) (61)

(o, 1) =J

Unfortunately here the time dependence is intricately intertwined with the spectral composi-

tion of the remaining one-photon wavepacket. A treatment as simple as in the one-photon

case is thus not possible. Nevertheless we may identify two tractable classes of spectral
envelopes which cover practically all physically relevant cases:

1. the two-photon wavepacket was created by a single source in a way that both photons
are of almost the same frequency with a distribution that is much narrower than any of
the resonances of the system the packet impinges on. We may then carry out the follow-
ing approximation

Ss(w, 1) = —iw,gs(w, 1), (62)
with w), the center frequency of the two-photon wavepacket.

2. each of the photons constituting the two-photon wavepacket was created by a different
source. The two-photon spectral envelope can be factorized, i.e.,

glwr, ) = (gi1(w1) g2(w2) + g1 (w2) g2(w1))/2. (63)
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For Eq. (60) this implies the following simplification:

bin(1) |¥a)g = % . ; 2g,~(t) J dw gj(w) b'(w) |vac), (64)

i#]

where g;(¢) denotes the Fourier transform of g;(w).
In order to accommodate the most general case we could also adopt a procedure similar to
the one of case 2 above. By expanding g(w;, ;) in an orthonormal set of functions we
would arrive at an infinite hierarchy of coupled density operator equations. The generaliza-
tion to arbitrary two-photon envelopes is thus straightforward; obtaining an analytical solu-
tion might however become quite challenging.

A. The general case

In the case of a general two-photon spectral envelope we now expand g(w, w,) in terms
of an orthonormal set of functions {f,(w)} :

8(6017 wz) = %gaﬁfa(wl)fﬂ(wz), (65)

with g, 4 complex and symmetric in «, 8. Note that in the case of nearly Gaussian spectral
distributions the harmonic oscillator eigenfunctions would in principle provide a reasonable
basis set. Having done so we realize the need to introduce a set of reduced, normalized
one-photon wavepackets defined by

W) = [do fu() bl () vac) . (66)

To simplify notation we set |¥o) = |vac). This permits the definition of the following set
of operators (note that o(1) = 0,,(¢))

0;(t) = ur(U(t, 10)) |¥3) ()] @ 05U (1, 10)) , (67)

with i, j € {0, a, 2}. Using the same procedure and model as in Sec. III one obtains

0n(1) = Loy (1) + V2 (Z% (ult) 8aplopa (1), €1 = FE1) glplofp(0), ). (68a)
00 (1) = L4 (1) + (fal1) 00 (1), €] — \5% [0ap (1), <] &5y f3(1)) (68b)
b0a(1) = Lo (1) = V2 a% [00a(1), €] gusf (1), (68¢)
0up(1) = L0ap(1) + (ful0) [005(1), €' = [0ao (1), ] F5(1)) (68d)
00a (1) = Loa (1) = fa(t) [on (1), ], (68e)

000(1) = Logo(1) , (68f)
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) =% [dwe =0 o). (69)

In case of convergence problems we would have to issue the integral kernel with an addi-
tional cut-off term which reflects the finite bandwidth of the system resonance. The com-
pact hierarchy of equations we have just derived is nigh insoluble unless the series expan-
sion may be truncated after a few terms. Let us therefore turn to the two special cases
mentioned above and try to see how they may be derived from the general case.

where

B. Narrow band two-photon source

As outlined above the assumption of narrow bandwith of the two-photon wavepackets al-
lows a simple further treatment of the reduced wavepacket given in Eq. (60). We here
promote a wholistic approach in which all partial wavepackets are dealt with in one fell
swoop. The idea is to no longer discern between the contributions from the various partial
wavepackets but rather to consider quantities of the following kind, as e.g.,

on(1) = % Ju(t) ap0p (1) (70)

which appears on the rhs of Eq. (68a). Further operators o,;, and @, are defined in an
analogous way. A further treatment hinges on the assumption that to good approximation
the following is true for all f,(¢): f, (1) = —iw, fa(1).

We then may derive the following set of coupled equations

0(1) = Lon(1) + V2 (l012(1), €] = [o},(1). ¢]). (71a)
012() = (£ — i) 015(1) + (85(1) [002(1), €] = V201, (1), €]), (71b)
002(1) = LOga(1) = V2001 (1), ], (71c)
O (1) = Loy, (1) + (85(1) og; (1), €] = 83(1) [0, (1), €]), (71d)
601(1) = (£ + i) 001 (1) — £5(1) [000 (1), ] (71e)
00 (1) = Logo(t) , (71f)

with the dimensionless effective complex pulse shape
8s(r) = %ﬂ(t) 8apfp(t).- (72)
a,

Note that the last three equations of this set are basically identically to those obtained for a
single one-photon wave-packet. For the simple example of Sec. IV this set of equations is
soluble within the validity of the underlying assumptions about the width of the wavepacket
and the system time scales.
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C. Independent sources

For two independent one-photon sources it is legitimate to restrict our considerations to
those g(w, w,) which can be represented as a symmetrized product of the spectral envel-
opes of the two one-photon wavepackets. This case is of particular interest in quantum
computing when two quantum bits generated by independent sources undergo processing in
a two-bit quantum gate as suggested by Kimble and coworkers [8].

The corresponding set of equations can be obtained from the result for the general case
by simply considering a set of functions {f,} with only two not necessarily orthogonal
members. We thus refrain from explicitly writing down the resulting master equations. It
must, however, be emphasized that the complexity of these equations especially for a non-
trivial Liouvillian £ can become so great that a direct integration of the explicitly timede-
pendent master equation seems a hopeless task. Still these problems lend themselves to a
formulation in terms of stochastic wavefunction simulations as there exists a corresponding
cascaded systems picture.

X. Conclusions

In this paper we have developed a formalism to model the interaction of a quantum optical
system with N-photon wave packets, as is relevant for quantum information processing and
quantum communications with photons. As a result, we have obtained a hierarchy of
coupled density matrix type equations which describe the system response to the incident
wave packets. In the present paper we have introduced the basic ideas of our approach
illustrated in the context of single photon wave packets, and we have outlined the extension
of the formalism to the two-photon case. Examples of the application of this theory, in
particular to quantum logical operations with photons, will be presented elsewhere.
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