Område | Moment | Sidor | Aktiviteter |
---|---|---|---|
Ljusets kvantisering | |||
Fotoelektriska effekten | Kunna rita skisser av olika relationer mellan fotoström och ljusets intensitet och våglängd (frekvens). Kunna bestämma utträdesarbete ("work function") och Plancks konstant, h, från givna data. Förstå varför detta är ett nyckelexperiment i kvantfysiken. | 986-9 | Uppgifter |
Compton-effekt | Veta att ljuset har impuls och att experimentella data kan förklaras genom att betrakta en kollision mellan en elektron och en foton, och utnyttja konservering av energi och rörelsemängd | 989-91 | Läs i boken |
Värmestrålning, "svartkroppsstrålning" | Känna till principerna för jordens strålningsbalans (sedan tidigare), känna till Wiens förskjutningslag.
Se också Spektrum, nedan | 1134-6, 471-3 + www | Se Sammanfattning |
Materievågor | |||
de Broglie-vålängd | Förstå varför den inte uppträder i makroskopiska fenomen. Förstå varför elektronmikroskop har bättre upplösning av optiska. Kunna uttrycket och kunna använda det. | 992-5, | |
Bohr-atomen | Kunna härleda energinivåerna för vätelika system i Bohrs atommodell med de Broglie-våglängden. Vilka postulat använde Bohr? Vilka fenomen kan förklaras? Vilka begränsningar finns? | ||
Tunnling | Känna till fenomenet. Kunna använda formlerna (39-21); (39-22). Känna till STM och koppling mellan tunnling och fission | s 998-9, 1080-4 | |
Vågfunktioner | "Förstå" vågfunktionens tolkning som sannolikhetsfördelning. Kunna beräkna sannolikheten att hitta en partikel i vissa områden när vågfunktionen är given (för specialfallen "partikel i låda" och vätelika system) | 995-7 | |
Heisenbergs osäkerhetsrelation | Både impuls/läge och energi-tid. Hur är den relaterad till våg-partikel-dualismen? Virtuella partiklar? Spridning i spalt. Partikel i låda och väteatomen. | ||
Kvantisering | |||
Partikel i låda | Kunna bestämma möjliga vågfunktioner i en låda. Kunna bestämma energinivåerna i en 2-dimensionell och 3-dimensionell låda. | ||
Kvanttal | Förstå hur man får fram kvanttalen för partikel i låda. Relation kvanttal - dimension. Känna till kvanttalen för elektrontillstånd i en atom. Relation till periodiska systemet. | CUPSqm, CUPSmp, | |
Elektronens spin | Stern-Gerlachs experiment. Kvantisering och mätprocessen. Polarisation. Spin och magnetism | 1029-35 | |
Schrödinger ekvationen | Förstå att SE kan lösas och att lösnignarna ger infomration om atomens egenskaper. | CUPS | |
Spektra | Relation energinivåer - spektra. Veta att (och hur!) ljuset från en stjärna kan berätta om temperatur, hastighet bort från oss, kemisk sammansättning. | ||
Röntgenspektra | Beskriv ett spektrum (fig 41-14) , karaktäristiska röntgenspektra: vilka elektrontillstånd. Hur kan man uppskatta energien. Periodiska systemet. Översiktligt förståelse av hur ett ämnes elektronstruktur relateras till makroskopiska egenskaper | ||
Periodiska systemet | Relation till vätes kvanttal. Periodiska systemet för gaser och kemiska reaktioner. Röntgenspektra. Pauliprincipen. Elektronens spin. | ||
Kvantmystik "Dem som inte är chockad över kvantmekaniken har inte förstått den" sa Niels Bohr - varför? | |||
Dubbelspalten | Repetera. En-foton i taget vad händer. | 992-3 | |
Köpenhamnsskolan | Schrödingers katt, "vågfunktionens kollaps", mätprocessen | 992-3 | |
EPR-paradoxen | Kvantteleportation, etc | 1022-3 | Rollspel, grupp 3 |
Fundamentala konstanter och absoluta mått | |||
Icke-särskiljbarhet | Vi tror att alla elektroner i universum har samma laddning och massa. Cs- klocka, meterdefinitionen. | ||
Konstanternas storlek | h, c, e, m, Hur skulle världen ändras om konstanterna vore annorlunda? Förutsättning för liv? | ||
Kärnfysik | |||
Fission / fusion l | Kunna diskutera kärnreaktioner utgående från fig 43-6. | 1075-80 | |
alfa- beta - gamma | Översiktlig kännedom om nuklidkartan och sönderfalls-processer. Sönderfall och halveringstider. | ||
Datering och doser | Relation mellan sönderfallskonstant, aktivitet och halveringstid | ||
Krafter och partiklar. Materiens uppbyggnad | |||
Fyra växelverkningar | Känna till de fyra och deras styrkeordning och mellan vilka partiklar de verkar. Förstå deras roll i olika fenomen och kunna identifiera vilken växelverkan som är huvudaktör i olika situationer. | s 25-26, 120-1, 1120, 1132-3 | |
Partiklar | Veta skillnaden mellan fermioner och bosoner, hadroner och leptoner. Känna till leptonfamiljen och veta att både hadron och leptontal konserveras. Partiklar/antipartiklar. Kvarkar | 1120-27(+1127-.32 kursivt) | |
Kraftförmedlare | "Virtuella partiklar", fotoner, W, Z-bosoner, gluoner (kursivt) | ||
Kosmologi | Big Bang - vilka observationer stöder denna teori? Hubbles lag. Mörk materia. Kosmisk bakgrundsstrålning | 1133-37 | |
Historiska aspekter | |||
Personer | Känna till huvudpersonerna i kvantmekanikens utveckling och deras roll: Einstein, Curie (Pierre och Marie!), Rutherford, Bohr, Schrödinger, Heisenberg, Pauli, Feynman (Det är inte förbjudet att lära sig om Planck, Becquerel, Compton, Dirac, Stern, Gerlach | Nobelpris -presentationer, se också sid A17-20 | Gruppernas rollspel |
Utveckling | Våg-partikeldualitet,Elektronspin, Atommodeller och Periodiska systemet, Manhattan-projektet | ||
Instrumentering - Kännedom om några viktiga instrument och deras betydelse: | |||
Spektroskop, | Hubble , | ||
NMR (Alias MRI) | 1036 | ||
Laser, | 850, 909, 1028, 1042-5, 1066 | ||
acceleratorer, synkrotronljus | Veta hur man kan skilja spåren från olika partiklar (dimkammare etc) | s 721 "Particle roundabout" Uppt. av elektronen (s 704), kap 29-6 Cyklotroner och synkrotroner.,711-3 | 12, s 721, 704 |
elektronmikroskop |