(Data from Whitby et al, J. Colloid Interface Sci, 39, 177, 1972)
First, we give D and dN from the data in the Table.
However, we also need the limits for the D intervals in order to work out the requested plots. This is a somewhat messy step.
D=1.E-6*[0.11 0.14 0.18 0.25 0.35 0.44 0.55 0.66 0.77 0.88 1.05 1.27 ... 1.48 1.82 2.22 2.75 3.30 4.12 5.22]; dN = [1800 1400 1600 1500 360 180 54 22 9.4 5.3 5.2 2.5 1.4 1.4 0.67 ... 0.26 0.11 0.24 0.02] ; S=pi*dN.*D.^2; % Surface of particle with diameter D V=pi*dN.*(D.^3)/6; % Volume of particle with diameter D %________________________________________ % Work out the limits for D dl(1)=0.09E-6; % Lower limit according to problem for i=1 :length(D) dl(i+1)=2*D(i)-dl(i); end dl(i+1) % Should be close to 5.8E-6 according to text - just for testing logd=log(D); % Logarithm used for the plots dlogd=diff(log(dl)); % delta log(D) to be used for the requested plots % (And in integrals on p77) %__________________________________________ % Plots of results subplot(2,2,1) plot(D,dN./dlogd) title ('Number of particles of different sizes') xlabel('D ') ylabel('dN/dlog') subplot(2,2,2) plot(logd,dN./dlogd) xlabel('log(D) ') ylabel('dN/dlog') subplot(2,2,3) plot(logd,S./dlogd) title ('Surface area') xlabel('log (D) ') ylabel('dS/dlogD') subplot(2,2,4) plot(logd,V./dlogd) title ('Volume') xlabel('log (D) ') ylabel('dV/dlogD') Ntot=sum(N) Stot=sum(S) Vtot=sum(V) rho = 1.7E6; % g/m^3 masscon=Vtot*rho*1.E12 %to get microgram/m^3