
An accurate measurement of g using falling balls
Kurt Wick and Keith Ruddick
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455

~Received 21 December 1998; accepted 21 April 1999!

We describe an experiment to determine the acceleration due to gravity,g, with an accuracy of
about 1 part in 104. The experiment was designed to expose students to critical thinking in
collecting, selecting, and analyzing data, and interpreting the results. ©1999 American Association of

Physics Teachers.
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I. INTRODUCTION

In teaching statistical analysis of data in the laboratory
is useful to make measurements on a simple system whic
familiar to the student. The measurement of the accelera
due to gravity,g, by observations on a falling object is suc
a system, and we have found it instructive in exposing s
dents in our junior-level laboratory tox2 analysis. We have
designed an experiment with sufficiently high precision t
students cannot easily look up the expected result; this o
comes a common problem in beginning laboratories, i.e.,
‘‘how close did I get to the right answer’’ syndrome.

In principle,g can be determined by measuring the timt
for an object to fall through a known distancey and by ap-
plying the simple formulay5 1

2gt2. With simple electronics,
it is straightforward to measure time intervals to a high p
cision. A problem arises, however, if an object is to
started from rest: There is no simple means of measurin
start time with sufficient accuracy, or of making a relea
mechanism which will respond instantaneously to an e
tronic signal. For precision results, we have found that i
necessary to measure the fall time between two differ
heights during the motion. We have found that it is possi
to measure the time for a spherical ball to fall between t
light beams up to 1 m apart with a precision of a few tens
microseconds. It follows that, by measuring the distance
tween the two heights to better than 0.1 mm, it is possible
measureg to about 1 part in 104.

In an experiment with this precision, the effects of a
buoyancy and drag on a falling ball become significant.
making observations on identically sized balls with differe
masses~we have used stainless steel and nylon balls! it is
possible to derive a correction for these effects.

II. APPARATUS

The main components of the apparatus are shown in
1. They consist of a caliper, a ball release mechanism,
pairs of light emitter sensors, an electronic amplifier and tr
ger circuit for the sensors, and a commercial period mea
ing instrument. The modified, commercial 100-cm calip
has a nominal resolution of 0.02 mm and forms the backb
of the apparatus. The balls are dropped through holes
pair of aluminum blocks which are rigidly attached to t
jaws of the caliper; the lower jaw is fixed while the upp
jaw can be adjusted over the entire length of the calip
allowing the balls to be dropped over a range of heights fr
5 to 100 cm. The optical emitter-sensor pairs are mounted
opposite sides of the blocks. Greater accuracy could h
been provided by a screw-type system but the caliper a
racy is compatible with the achievable timing accuracy;
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believe that it is also educational for the students to le
how to read the vernier scale on the caliper. The calipe
mounted on a solid base with adjusting screws to permit
adjustment, and additional support structure provides vib
tion damping. The entire apparatus is metal and is groun
to prevent electrostatic charging, which can affect the mot
of falling balls.

The ball release mechanism, shown in Fig. 2, use
piston-cylinder arrangement to create a partial vacuum
hold the 1.9-cm-diam balls. The device is armed by press
a ball against the lower air inlet and pulling the piston ba
until it ratchets. The mechanism is then placed in a fix
position on the movable upper jaw, approximately 0.5
above the first light beam. A small hole in the cylinder wa
allows the air pressure inside to increase slowly, and the
is released after a few seconds, when the pressure ha
creased sufficiently. The advantage of this suction devic
that it does not introduce any observable vibrations or p
turbations when a ball is released. In addition, it works w
both plastic and metal balls so that significantly differe
masses can easily be used, an important consideratio
making drag corrections.

The light beams are provided by infrared light-emittin
diodes ~LEDs! ~FD1QT! shining through 0.75-mm-diam
holes and they are detected by infrared photodio
~PN334PA! located behind 0.75-mm-diam holes. As a b
falls between the two light beams, the resulting pulses g
erated by the photodiodes are strongly amplified, and a
cuit consisting of two comparators is used to generate a p
from an RS-type flip-flop. The width of this pulse is equal
the time between the start and stop pulses and this ca
measured, for example, by a Philips PM2525 meter opera
in its period measuring mode. We have found that the typ
uncertainty in fall times is about 40ms, independent of the
distance fallen.

Vertical alignment of the apparatus is necessary; the
light beams must lie within;1 mm to the vertical to avoid a
systematic error of more than a few parts in 105. Adequate
alignment can be accomplished with a plumb bob and a
get, both of which can be mounted in the holes throu
which the balls fall. Leveling screws in the base provide
this adjustment.

We have found it useful to provide a sand-filled box
catch the balls. This not only prevents the laboratory be
filled with bouncing balls, but also preserves the surface
the balls.~Brass balls were found to be too easily deform
in hard bounces!.

III. THEORY

The equation of motion for a ball of massm falling in air
is
962© 1999 American Association of Physics Teachers
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m
d2y

dt2
5~m2mair!g2Fdrag, ~1!

wheremair is the mass of displaced air andFdrag is the drag
force which is taken to be proportional to the square of
locity, i.e., Fdrag5k(dy/dt)2. The quantity k50.5CrairA
whererair is the density of air,A is the cross-sectional are
of the falling ball, andC is the drag coefficient, which is
essentially constant for the velocities of concern here.~C
varies between 0.50 and 0.45 for Reynolds numbersR in the
range 103– 105; for 2-cm-diam balls falling up to 1 m inair,
the maximum value ofR is ;53103.1!

Defining

Fig. 1. The apparatus~the release mechanism is not shown!.

Fig. 2. The ball release mechanism.
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gB5gS 12
mair

m D , ~2!

the equation of motion becomes

d2y

dt2
5gB2

k

m S dy

dt D
2

, ~3!

which can be integrated to give:

y~ t !5
vT

2

gB
lnS coshS gB

vT
t D D , ~4!

wherevT is the terminal velocity of the ball,vT5AmgB /k.
This expression can be inverted to givet as a function of

y:

t5
vT

gB
cosh21S expS gBy

vT
2 D D , ~5!

which can then be expanded to a more useful form:

t5A2y

gB
S 11

1

6 S gBy

vT
2 D 1

1

120S gBy

vT
2 D 2

1¯ D . ~6!

We need only consider the first two terms of this seri
which contain the effect of drag to first order.~The maxi-
mum value of the second term amounts to; a few times
1023 in the present experiment.! SubstitutinggB from Eq.
~2! and keeping terms to first order yields

t5A2y

g S 11
1

m S mair

2
1

ky

6 D D . ~7!

This gives the time taken for a ball to fall from an initia
heighty50 and demonstrates more explicitly the effects
both buoyancy and drag.

Now we consider two separate balls of massmA andmB

with identical shape~samek! which take timestA and tB to
fall between heightsy1 andy2 . Thus, for example,

tA5A2y2

g S 11
1

m S mair

2
1

ky2

6 D D
2A2y1

g S 11
1

m S mair

2
1

ky1

6 D D , ~8!

which can be written as

tA5t`1
1

mA
f ~y1 ,y2!, ~9!

where we have defined a quantityt` as

t`5A2y2

g
2A2y1

g
, ~10!

which would be the time taken for a ball of infinite mass
fall between heightsy1 and y2 , i.e., where there are no ef
fects of drag and buoyancy. After writing a similar expre
sion for tB , it readily follows that

t`5
tAmA2tBmB

mA2mB
. ~11!

Thus for each value ofy2 we can determinet` from the two
measured fall times and the masses of the balls.~We note
that the effect of buoyancy drops out in the final analysis!
963K. Wick and K. Ruddick



a

n
st

-

a

e
a

fo
e
o

oi
o

tiv
o
th

ns
ho

d-
o

ies

ich

o
llo
a
ge
si

he

.

t

i-
ecial
atic
red
atic
by

t be
alls
rac-
us

ses
ced

in

pts
-
lt,
er

is
l-
he

he
en-
li-
ra-

a-
ncer-
e

Some simple manipulation then yields the familiar equ
tion

Dy5y22y15 1
2gt`

2 1v1t` , ~12!

wherev15A2gy1 is the velocity of the ball after it has falle
a distancey1 , i.e., its initial velocity when it passes the fir
light beam. Finally, this equation can be linearized

Dy

t`
5v11

1

2
gt` , ~13!

so that a graphDy/t` vs t` , which is determined from mea
sured quantities, should be a straight line with slopeg/2 and
a standard least-squares fitting program can be used to
lyze the data.

IV. DATA COLLECTION AND ANALYSIS

First, students make several measurements of the time
quired for a ball to drop some fixedDy in order to assess th
timing uncertainty. It is then suggested that they make
initial error analysis to determine an optimum strategy
data taking. The balls are weighed and their diameters m
sured. Timing measurements for each ball, one steel and
nylon, are made at 20–30 values ofDy over the full range,
up to 100 cm, with 2 or 3 measurements made for each p
to detect any immediately obvious systematic timing err
The value oft` can be calculated from these data.

A problem appears in the determination ofDy, since the
vernier scale readings on the caliper give only the rela
displacement between the two light beams, because of
sets that cannot easily be determined directly. In addition,
absolute value ofDy also depends on the exact positio
where the ball intercepts the light beams and on the thres
settings of the comparators. To determine the offsetd be-
tween the actualDy and that obtained from the caliper rea
ings, trial values ofd can be added to the observed values
Dy. The best estimate ofd is that which minimizesx2 in the
straight line fit ofDy/t` vs t` . x2 is defined as

x25(
i 51

n

x i
25(

i 51

n
~~y/t ! i2~y/t !fit!

2

~sy/t! i
2 , ~14!

where (sy/t) i is calculated from the estimated uncertaint
in y and t.

All the fitting is done using an Excel spreadsheet in wh
students use equations as given inNumerical Recipes in C,2

for example. Not only does this teach students the utility
spreadsheets, but setting up their own spreadsheets a
them to examine thex i

2 of each point, to check for bad dat
points, and to check for trends. These features are not
erally available in inexpensive commercial data analy
software packages.

It is particularly instructive for the students to inspect t
plots of Dy/t` vs t` as a function ofd, along with the cor-
responding value ofx2. When the totalx2 of the fit has been
minimized by choosing the best value ofd, the fit automati-
cally gives the value ofg with its associated uncertainty
Observing the absolute value of the minimumx2 and com-
paring this with the number of data points~or, more pre-
cisely, the number of degrees of freedom! gives the studen
an appreciation of the importance of error assignment.
964 Am. J. Phys., Vol. 67, No. 11, November 1999
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A typical graph ofx2 vs d is shown in Fig. 3. From these
data, d51.037760.0014 cm. We then findv1529.817
60.007 cm/s andg5980.3860.06 cm/s2, where the quoted
errors are statistical only.

V. SYSTEMATIC ERRORS

When an experiment aims for high precision, it is inev
table that systematic errors become significant unless sp
care is taken. This is certainly the case here. Any system
uncertainty in the time measurements is negligible compa
to the statistical spread, but there are possible system
uncertainties in the measurements of the distance fallen
the balls.

We have already mentioned that the apparatus mus
accurately aligned vertically so that the centers of the b
pass through both light beams. Analysis shows that the f
tional error ing arising from a misalignment of the apparat
by a small angleu from the vertical is

Dg

g
5

y

R

u2

2
, ~15!

whereR is the radius of the ball andy is the height fallen.
Thus for R50.95 cm~the present case!, y5100 cm, andu
51023, i.e., assuming that the center of the ball pas
through the upper beam and that the lower beam is displa
by a nominal 1 mm, then the estimated systematic errorg
from a possible vertical misalignment is10.05–0.00 cm/s2.
~Such a misalignment leads to a value ofg which is low
since the ball must fall a greater distance before it interru
the lower light beam!. We note that this uncertainty is ap
proximately equal to the statistical uncertainty in our resu
and that doubling the nominal displacement of the low
beam, to 2 mm, would result in our result forg being low by
0.20 cm/s2. Accurate vertical alignment of the apparatus
essential!~We note that the Coriolis deflection of a ball fal
ing 1 m is only 0.018 mm and is of no consequence in t
present case!.

Determining the uncertainty in the absolute length of t
caliper presents a more difficult problem. Calipers are g
erally initially calibrated at a temperature of 20 °C. Our ca
per is of uncertain origin, but assuming a nominal tempe
ture coefficient of expansion of 131025 °C and assigning an
uncertainty of63 °C to the temperature at which the me
surements were made, we can estimate a systematic u
tainty in g of 60.03 cm/s2. We have attempted to calibrat
the caliper using a coordinate measuring machine3 which has

Fig. 3. x2 vs assumed caliper offsetd in centimeters.~43 data points.!
964K. Wick and K. Ruddick
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a nominal resolution of;0.01 mm and have shown tha
there are likely slight distortions of the caliper in the regi
where it is supported by a screw at its center. Such dis
tions have only a small effect on the determination ofg,
compared to uncertainties in the full length of the calip
We are uncertain of the absolute calibration of the coordin
measuring machine, but assign a nominal uncertainty of
mm in the absolute~100 cm! length of the caliper, roughly
the size of the local distortions. This corresponds to a p
sible systematic uncertainty of60.10 cm/s2 in our measure-
ment ofg. This latter uncertainty is almost twice as large
the statistical uncertainty in our measurement; it could
reduced by using a caliper of more certain pedigree~and
expense!.

We have found that, even for the smallesty, nylon balls
take a measurably longer time than steel balls to fall betw
the two light beams, typically 300ms for Dy52 cm, imply-
ing that the balls must pass through the first light beam w
slightly different initial velocitiesv1 . This is likely to have
only a very small effect ont` because of the dominance o
the much more massive steel balls in calculating this qu
tity, but the magnitude of the effect must be evaluated. T
effect is such that it appears that the nylon balls fall from
slightly smaller height than the steel balls, so that their ini
velocity v1 is slightly smaller. Fits to the data fory less than
10 cm, where drag is negligible, and allowing bothd andv1
to vary, indeed show that both steel and nylon data yield
samed but that the nylonv1 is significantly smaller~corre-
sponding to an effective difference in the heighty1 of 0.013
cm in this case!. Since the diameters of the balls have be
measured to be the same within 0.003 cm, we assume
the effect is due to the existence of a partial vacuum~Ber-
noulli effect! which exists just after the ball is released, a
ing to reduceg effectively over some short distance. Th
effect would be greater for the lighter nylon ball. A simp
correction for this effect can be obtained by differentiati
the equation of motion for a falling ball

y5v1t1 1
2gt2 ~16!

to give

dt52
dv1

gS 11
v1

gtD
. ~17!

After correcting the fall times for the nylon balls in th
manner we find that the effect on the fittedg is to increase it
by an amount 0.03 cm/s2, well within the statistical error.

From this particular experiment, then, after applying t
small correction, we have determined a best valueg
5980.4160.0660.11 cm/s2, where the quoted errors ar
statistical and systematic, respectively. And yes, we h
succumbed to the temptation alluded to in Sec. I: We h
contacted the Minnesota Geological Survey4 and have found
that the local value ofg is known to be 980.583 22 cm/s2

with a systematic uncertainty on the order of 0.000 08 cm2.
That measurement was made close to ground level, app
mately 100 m from our laboratory, using a pendulum te
nique. Although our laboratory is approximately 10 m belo
ground, we estimate that this would reduce our value fog
by only about 0.003 cm/s2. Our result is thus significantly
lower than the accepted. As we have commented above
suspect that the main cause of this disagreement is the
certainty in the absolute length of our caliper.
965 Am. J. Phys., Vol. 67, No. 11, November 1999
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VI. DETERMINING THE DRAG COEFFICIENT

From equations developed earlier, we can obtain an
pression for the difference betweent` and the measuredt at
each height, demonstrating directly the effects of buoya
and drag on the fall times, i.e.,

Dt5t2t`5
mair

2m
t`1

k

6m
A2

g
~y2

3/22y1
3/2!, ~18!

where the first term gives the effect of the buoyant force a
the second the effect of drag. The result of subtracting
small buoyancy term from the values ofDt and plotting the
remainder versusy2(5Dy1y1) is shown in Fig. 4. The lines
show the predicted variation asy2

3/2. While this graph shows
that the data prefer a variation less than the power 3/2
acceptablex2 is obtained for the fit to the predicted behavio
Using only the data beyondy2550 cm and the measure
masses, we findk5(8.4360.11)31025 and 8.4560.48
31025 N/m2/s2 for the nylon and steel balls, respectivel
Taking the density of air to be 1.1860.01 kg/m3 ~at 20 °C
and 50% humidity!5 we determine the drag coefficientC
50.5060.01.
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Fig. 4. Dt, excess fall time due to drag, vsy2 , the total height fallen. The
solid lines show the fits toy2

3/2 .
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