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I. INTRODUCTION

The periodic motion exhibited by a simple pendulum is
harmonic only for small angle oscillations.1 Beyond this
limit, the equation of motion is nonlinear. Although an inte-
gral expression exists for the period of the nonlinear pendu-
lum, it is usually not discussed in introductory physics
classes because it is not possible to evaluate the integral ex-
actly in terms of elementary functions.2 For this reason, al-
most all introductory physics textbooks and laboratory
manuals discuss only small angle oscillations for which the
approximation sin !%! is valid. The linearized equation has
a simple exact solution, whose derivation can be understood
by first-year students.1 This linearization has bothered us
since our undergraduate days because the amplitude needs to
be less than 7! if an error less than 0.1% !the typical experi-
mental error obtained with a stopwatch" is desired. Measure-
ments in undergraduate laboratories rarely have such small
amplitudes,3 and interested students sometimes ask for a re-
lation that can describe the increase of the period observed
for large amplitudes.4

The restriction to small angle oscillations hinders the un-
derstanding of real-world behavior because the pendulum
isochronism observed in the small angle regime vanishes for
increasing amplitudes. This restriction is also unnecessary
because millisecond precision in measurements of the period
is easily obtained with current technology.5–8 For instance,
an experimental error of the order of 0.1% or less is typically
obtained with a one meter long pendulum, and thus accurate
experimental studies of the dependence of the period on am-
plitude are possible even in introductory physics
laboratories.7,8

In this paper we derive a simple and accurate expression
for the period of a pendulum oscillating beyond the small
angle regime. The deviation from the exact results is of the
same order of the experimental error.

II. APPROXIMATION

An ideal simple pendulum consists of a particle of mass m
suspended by a massless rigid rod of length L that is fixed at
the upper end such that the particle moves in a vertical circle.
This simple mechanical system oscillates with a symmetric
restoring force !in the absence of dissipative forces" due to
gravity, as illustrated in Fig. 1. Its equation of motion is
given by2

d2!

dt2 +
g

L
sin ! = 0, !1"

where ! is the angular displacement !in radians" !!=0 at the
equilibrium position" and g is the local acceleration of grav-
ity. For a given initial condition, the exact solution can only
be obtained numerically !with arbitrary accuracy". For small
angle oscillations, the approximation sin !%! is valid and
Eq. !1" becomes a linear differential equation analogous to
the one for the simple harmonic oscillator. In this regime, the
pendulum oscillates with a period T0=2"&L /g.1 This rela-
tion underestimates the exact period for any amplitude, but
the difference is almost imperceptible for small angles. For
larger angles T0 becomes more and more inaccurate for de-
scribing the exact period and Eq. !1" can be used to obtain a
numerical solution.

Alternatively, an integral expression for the exact pendu-
lum period may be derived from energy considerations, with-
out a detailed discussion of differential equations. If we take
the zero of potential energy at the lowest point of the trajec-
tory !see Fig. 1" and choose for simplicity the initial condi-
tions as !!0"= +!0 and d! /dt!0"=0, we have2

mgL!1 − cos !0" =
1
2

mL2'd!

dt
(2

+ mgL!1 − cos !" . !2"

The solution for d! /dt is

d!

dt
= ±&2g

L
!cos ! − cos !0" , !3"

where the +!−" sign is for counter-clockwise !clockwise"
motion. If we integrate d! /dt from !0 to 0 #thus choosing the
− sign in Eq. !3"$, corresponding to a time equal to one-
quarter of the exact period T, we have

T = 2&2&L

g
)

0

!0 1
&cos ! − cos !0

d! . !4"

The definite integral in Eq. !4" cannot be expressed in terms
of elementary functions.2,9 Note that the numerical evalua-
tion of the period using Eq. !4" is not straightforward
because the integrand has a vertical asymptote at !=!0,
which makes the integral improper.10 This difficulty can be
circumvented by substituting cos ! by 1−2 sin2!! /2" and
making a change of variables given implicitly by sin #
=sin!! /2" / sin!!0 /2". In this way, Eq. !4" becomes
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T = 4&L

g
)

0

"/2 1
&1 − k2 sin2 #

d# , !5"

where k*sin!!0 /2". This definite integral is K!k", the com-
plete elliptic integral of the first kind, which is not improper
because k$1 for +!0 + $".

It is not difficult to numerically evaluate T for a given
amplitude. The relative error made in approximating T by T0,
where T=2T0 /"K!k", is11

T0 − T

T
=

"

2K!k"
− 1. !6"

Our proposed approximation for the pendulum period is
based on the observation that f!# ,k"*&1−k2 sin2 # is a
smooth function of #, whose concavity changes from down-
ward to upward at a point near the middle of the interval of
integration, that is, 0%#%" /2. As shown in Fig. 2, this
change occurs for all !0 between 0 and " /2.12 We use the

points !0,1" and !" /2 ,a" for a linear interpolation, where
a* f!#=" /2 ,k=sin !0 /2"=&1− !sin !0 /2"2=cos !0 /2, and
approximate f!# ,k" by

f!#,!0" % 1 −
2
"

!1 − a"# . !7"

We substitute Eq. !7" in the denominator of the integrand in
Eq. !5" and find

K!k" % )
0

"/2 1
1 − !2/""!1 − a"#

d# = −
"

2
ln a

1 − a
. !8"

Finally, by substituting Eq. !8" in Eq. !5", we find

Tlog = − 2"&L

g

ln a

1 − a
= − T0

ln a

1 − a
. !9"

Note that ln a$0 and hence Tlog&0 for +!0 + $". The
relative error in the logarithmic expression in Eq. !9" is given
by13

Tlog − T

T
=

"

2K!k"
!− ln a"
1 − a

− 1. !10"

III. COMPARISON WITH OTHER
APPROXIMATIONS

We compare the accuracy of the approximation for the
pendulum period in Eq. !9" to that of other known approxi-
mations for amplitudes less than or equal to " /2.12 The rela-
tive errors found by approximating the exact period by T0
and Tlog and other formulas are depicted in Fig. 3, where it is
seen that all approximations present the same general behav-
ior: For small amplitudes their corresponding error curves go
to zero and for larger amplitudes the curves increase mono-
tonically, reflecting the increase of the relative error with the
amplitude obtained with all known approximation formulas.

Fig. 1. The pendulum bob is released at rest from a position that forms an
angle !0 with the vertical and passes at an arbitrary angle ! !$!0" with a
velocity Ld! /dt. Its height depends on ! according to L!1−cos !".

Fig. 2. Behavior of the function f!# ,k"=&1−k2 sin2 # for 0%#%" /2 and
for some values of !0 #k=sin!!0 /2"$. The horizontal and vertical dashed
lines are for f!# ,k"=1 and #=" /2, respectively. The dashed-dotted lines
are the linear interpolation in Eq. !7" for !0=" /6, " /4, " /3, and " /2.

Fig. 3. Comparison of the relative errors for the various approximations
discussed in the text for the period. All curves increase monotonically with
!0. The horizontal dashed line marks the 0.1% level. The small angle ap-
proximation !T%T0" yields an error that is greater than 0.1% for !0&7! and
reaches 15.3% for !0&90!. The thick solid line is for Eq. !9". Note that it
remains below all other curves for 0!%!0%90!.
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Note that the rate at which the error increases is different for
each curve. In this sense, the small angle approximation T
%T0 exhibits the worst behavior because its error becomes
greater than 0.1% !0.5%" for an amplitude greater than 7!

!16!".
The second-order approximation found by Bernoulli in

1749 from a perturbative analysis of Eq. !5", perhaps the
most famous expression for the large angle period, is14

T2 = T0'1 +
!0

2

16
( . !11"

As seen from the short-dashed line in Fig. 3, it leads to an
error that increases rapidly, and is greater than 0.1% !0.5%"
for amplitudes above 41! !60!". The addition of more terms
improves the accuracy of T2.15

More recently, other approximation expressions have been
proposed. Among them, the Kidd-Fogg formula has attracted
much interest due to its simplicity.8 It is given by

TKF = T0
1

&cos!!0/2"
. !12"

The dashed-dotted line in Fig. 3 represents the error for TKF.
The error is greater than 0.1% only for amplitudes !0'57!

and reaches 0.8% for !0=90!. Thus, it is not accurate enough
for interpreting the experimental data for very large-angle
amplitudes, contrary to the claim of Millet.16

Another expression for the period arises when an interpo-
lationlike linearization is made directly in Eq. !1".17 The re-
sulting expression is

TM = T0' sin !0

!0
(−3/8

, !13"

which has an error greater than 0.1% only for !0'69! !see
the thin solid curve in Fig. 3". However, the error reaches
,0.4% for !0=90!, which is four times the typical experi-
mental error !0.1%".

The error using Eq. !9" for the period !see the thick solid
line in Fig. 3" remains below all other error curves for any !0
and is greater than 0.1% only for amplitudes greater than 74!.
Moreover, it increases slowly, reaching only 0.2% for !0
=86!. Therefore, Eq. !9" is the better approximation for the
exact pendulum period because it yields a smaller relative
error for the range of amplitudes studied here.

IV. EXPERIMENT AND RESULTS

Reliable data for large-angle pendulum periods were ob-
tained by Fulcher and Davis4 using a pendulum made with
piano wire !measuring two successive swings" and by
Curtis,18 who determined the period as the average of 10
successive periods for each initial amplitude. Both papers are
good examples of accurate period measurements made with
an ordinary stopwatch. The measurement of the time interval
for n successive periods is a good strategy for oscillations in
the small angle regime, where the amplitude does not change
significantly from one swing to the next, but not for large-
angle oscillations, because the period decreases considerably
due to air friction. This behavior is confirmed in Fig. 4,
where the period T in units of T0 is plotted as a function of
!0. In Fig. 4 the curves for each approximation discussed in
Sec. III are plotted. Experimental data taken from Refs. 4
and 18 and the measurements taken by us in a more sophis-

ticated experiment5,19 are also shown. The experimental data
for amplitudes greater than 40! clearly reveal a systematic
overestimation for the period due to air damping.

In our experiment both the time keeping and position de-
tection were done automatically to reduce the instrumental
error to milliseconds, which is much less than the error in
time keeping when a common stopwatch is used !of the or-
der of 0.2 s, the average human reaction time". We measured
the pendulum period by measuring the time interval between
two successive passages of the pendulum over the lower
point of its circular path, which corresponds to T /2. The
measurement was based on the variation of the electrical
resistance of a light-dependent resistor during the passing of
the pendulum’s bob through the path of the light from a
laser.5 Electronic circuitry is needed for converting the ana-
logue signal generated in the light-dependent resistor when
the pendulum’s bob cuts the light’s path to TTL compatible
digital voltage, so that the microprocessor can understand the
change in current. The details of the design/operation of the
circuitry and the microprocessor program required for mea-
suring the time interval between successive interruptions in
the illumination of the light-dependent resistor are in Ref. 19.

We devoted much attention to the reduction of the air re-
sistance on the motion of the pendulum bob by choosing
suitable materials and parameters for the pendulum. We used
lead as the bob material due to its high density in comparison
to other inexpensive metals, which gives a small size and
large weight for the bob. We found that a cylinder is prefer-
able to a sphere because it allows for a better localization of
the center of mass, which is needed for measuring L accu-
rately. The cylindrical shape also yields a reduction of air
resistance by reducing the scattering cross section, that is, by
choosing a diameter much smaller than the height of the
cylinder. These considerations led us to fabricate a body with
a mass of 0.400 kg. For this massive bob we verified that
cords made of nylon, a commonly used material, are inad-
equate because they stretch considerably for large angle os-
cillations and cause undesirable vibrations. The more conve-

Fig. 4. Comparison of the ratio T /T0 for the approximation expressions
discussed in the text and experimental data. The dotted curve is for the
Bernoulli formula, Eq. !11". The dashed-dotted curve is for the Kidd-Fogg
formula, Eq. !12". The dashed line is for the logarithmic expression, Eq. !9".
The solid line is the curve for the exact period, found by numerical integra-
tion of K!k". The experimental data were taken from Ref. 4 !+" and Ref. 18
!!", and the black diamonds are our experimental data.
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nient material taking into account low elasticity, lightness
!see Ref. 20 for the importance of this factor", price, and
availability, seems to be cotton, thus we used a common
sewing thread as the pendulum cord. We also investigated
what cord length would give the best experimental results for
large angles.21 After comparing many lengths for an ampli-
tude of 60!, we chose a length of 1.50 m so that the bob
speed would be small !because air friction increases with
speed, the longer the string length, the less the effect of air
friction on the period". This length has a period of %2.5 s,
which is sufficiently small for doing several repetitions of the
period measurement for each amplitude during a 1-hour
class. These considerations led us to much more accurate
experimental data for the pendulum period for amplitudes
less than or equal to 90!, as shown in Fig. 4. It is seen that
our experimental data !black diamonds" are closer to the ex-
act period expected in the absence of air resistance !the solid
line" than the data in Refs. 4 !crosses" and 18 !circles". The
logarithmic expression in Eq. !9" is also in better agreement
with the experimental data.
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