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A rod, connected with a horizontal hinge to the vertical axle of a motor, will deviate from the
vertical at angular frequencies of the motor above a certain minimum value. The acceleration of
gravity is related in a simple way to the speed of the motor, the length of the rod, and its angle with
the vertical. It turns out that g can be measured in this way with an accuracy of about 0.1% without
the use of sophisticated technology or the application of corrections to the result. The system has
some other interesting features which make it particularly appropriate for the undergraduate

laboratory . © 2000 American Association of Physics Teachers.

I. THE CASE OF THE SIMPLE PENDULUM

Suppose a particle with mass m is connected by a massless
wire of length / to the vertical axle of a motor. Due to the
centrifugal force on the particle the wire will deviate from its
vertical position at a sufficiently large angular frequency of
the motor and make an angle # with the vertical. If the an-
gular frequency of the motor is constant, the mass will move
in a horizontal circle and the pendulum has only one degree
of freedom, 6. Such a system is called a conical pendulum. It
is discussed in some standard texts on mechanics, e.g., by
Kibble and Berkshire.! Several papers on the subject have
been published in this journal.>~> Some authors® use a flyball
governor as an illustration of the same mechanics.

We introduce a reference system (x,y,z) which is rigidly
connected to the axle of the motor (Fig. 1). The origin O is at
the fixed point of the wire. The z axis points down. The
horizontal y axis is in the meridian plane of the wire. If the
angular frequency of the motor is constant there will be equi-
librium in the rotating system (x,y,z) if the sum of the mo-
ments of the gravitational force mgu, and of the centrifugal
force my wzuy and the torque of the hinge on the pendulum
equals zero. Setting the x component of the total moment
equal to zero, one gets

ml sin 6(I cos Bw’>—g)=0. (1.1)
Solutions of this equation are
1. sin #=0, (1.2)
&
2. cosf= e (1.3)

Since cos A=<1 the solution (1.3) exists only for w?=g/I:
The pendulum can leave its vertical position provided the
angular frequency is at least as large as the resonance fre-
quency of the simple pendulum.

With (1.3) the value of g can be determined from w, 6, and
l:

g=lw?cos . (1.4)

II. STABILITY OF THE SOLUTIONS

We investigate the potential energy as a function of the
angle 6 with the vertical. Since equilibrium is established in
the rotating reference system we must include the potential
energy

704 Am. J. Phys. 68 (8), August 2000

V= —imw’y?=—Imi*w® sin* 0 (2.1)

of the centrifugal force.
The total potential energy V becomes
V=mgl(1—cos #)— tml*>w?* sin> § (2.2)
and its derivative with respect to 6 is

dv
— =mgl sin —ml*>w* sin 6 cos 6.

70 (2.3)

Putting this expression equal to zero yields the solutions
(1.2) and (1.3):
0=0 or w (2.4)
and
6=arccos(g/lw?). (2.5)

The stability of these solutions depends on the sign of

d’v 2 2, 2 . 2
d—02=mgl cos 0—ml*w=(cos” O—sin~ 0) (2.6)
at the corresponding values of 6.
For 6=0,
d*v ,
=mgl—ml*w". (2.7)

de*

If w><g/l this expression is positive and the equilibrium is
stable.

If w>>g/I, the second derivative of V is negative and the
equilibrium is unstable.

For 6=, the second derivative is always negative.

For 6= arccos(g/lwz),

d*v mg?

o __e 2 2
10 o +ml-w”.

(2.8)
If w?=g/l (the condition for the existence of this solution)
the second derivative is positive and the solution is stable.

The results are illustrated in Fig. 2 for w*>< g/ and in Fig.
3 for w?>g/l. The conical pendulum is thus characterized
by a critical frequency

a)I\/g
¢ l
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Fig. 1. The conical pendulum. G is the gravitational force, K the centrifugal
force, and T the tension in the wire.

above which the pendulum can deviate from the vertical.
This allows one to write (1.3) as

(ol )

o)
cos = —. (2.10)
w

The system is said to show spontaneous symmetry breaking.
Below the critical frequency w, the pendulum stays vertical,
i.e., symmetrical with respect to the only special orientation,
that of the gravitational force. Above w,. the pendulum devi-
ates from the vertical and makes an angle 6 with it. In the y,z
plane, the symmetry with respect to the orientation of the
gravitational force is lost or ‘‘broken.”’

Spontaneous symmetry breaking is an important phenom-
enon in elementary particle physics, but it also occurs in
several other branches of physics. A well-known example is
the transition from paramagnetism to ferromagnetism. The
paramagnetic state is characterized by a random orientation
of the atomic magnetic moments. This arrangement changes
when the temperature is lowered below the Curie tempera-
ture, the critical temperature 7. at which ferromagnetism sets
in. In this state the atomic moments are oriented parallel to
each other in a particular direction which could as well have
been another one. The symmetry with respect to direction is
broken.

Several authors®™*’ have treated simple mechanical sys-
tems like this one just to illustrate the principle of symmetry
breaking. In this paper, however, we concentrate on a means
of measuring the acceleration of gravity with a conical pen-
dulum. Several other methods have been used for this pur-
pose. The most obvious method is presumably the free fall
experiment, but it sometimes suffers from a lack of preci-
sion. This can be remedied by slowing down the motion,
either by observing the motion on a slope as was done by
Galileo, or by using an Atwood’s machine.

705 Am. J. Phys., Vol. 68, No. 8, August 2000

25¢

2.0-@ \

15 Mg

1.0}
05}

0.0

L

-O'-550° 0° 50° 100° 150° / 200° 250°
180°

Fig. 2. Potential for w?= %g/l.

More precise measurements can be performed by deter-
mining the period of a plane pendulum. This was done in a
very accurate way by Nelson and Olsson.® Jesse’ uses a
Kater pendulum, in which the swinging body can be sus-
pended from two different points of the body.

An extremely accurate (3X10”°!) experiment was done
recently by Peters er al.'” using an atom interferometer.

The occurrence of a critical frequency in the conical pen-
dulum may, however, well contribute to provoking the stu-
dent’s interest.

II1. THE CASE OF THE PHYSICAL PENDULUM

Even if the particle in the case of the simple pendulum is
replaced by a sphere, the system is not well suited to a mea-
surement of g. A real suspension wire is not massless. The
rotation of the motor will make it twist, which results in an
undesirable complication of the motion. Furthermore, an ac-
curate determination of the angle between the moving wire
and the vertical is difficult. These problems can be avoided
by using a physical pendulum instead of a simple pendulum.

We give a treatment of the motion of the physical conical
pendulum in three different ways, thus providing an appro-
priate theory for students with different levels of knowledge.

The first treatment is elementary and follows the same
lines as our treatment of the simple pendulum. For simplicity
we use here the approximation of a thin rod. The moment of
the centrifugal force is obtained by a simple integration over
the length of the rod.
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Fig. 3. Potential for w?>=2g/I.
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In the second treatment we use Euler’s equations for the
motion of a rigid body with one point fixed. The moments of
inertia of the rod are calculated and the solution is exact.

Finally, the motion of the conical pendulum is studied in
the Lagrangian formulation.

IV. THE MOTION OF A THIN ROD

In the approximation of a thin rod, the relation between g,
[, and w remains elementary. Writing \ for the mass of the
rod per unit length and defining an s axis along the rod with
its origin at the hinge, the centrifugal force on a line element
of the one-dimensional rod is

dm wzyuy=()\ ds)w?(s sin O)u, (4.1)
and its moment with respect to the origin O is
s cos Bu, X \(ds) s sin fu,

=\(ds)w?*s? sin 6 cos bu, . (4.2)

Integrated over the length / of the rod the moment of the
centrifugal force is

! 1
u \ o’ sin 6 cos Hfosz ds=— gmw2 sin 6 cos 6/°u, .
4.3)
The moment of the gravitational force is
1lmg sin fu, . (4.4)
In equilibrium the total moment is zero:
Imlg sin 0— im1*w? sin 6 cos H=0. (4.5)
The solutions of this equation are
1. sin =0,
(4.6)
2. cos 0=3g/2lw*
or
g=2lw?cos 6. 4.7)

These are the solutions of a simple conical pendulum with
length 21/3.

In this derivation it was supposed that the rod goes all the
way to the fixed point which is at the center of the hinge. But
the presence of the hinge itself makes this impossible (Fig.
4). If the hinge has diameter 2d, the distance between the
fixed point and the upper end of the rod is d. This means that
the limits of integration of the moments of the elementary
centrifugal forces must be taken to be d and /+d instead of
0 and /.

For the same reason the distance between the center of
mass and the fixed point is //2+d. This value must be taken
into account in calculating the moment of the gravitational
force. With these corrections the second solution (4.7) of the
equilibrium equation becomes

1427
o= 8 : 4.8
R Y P d [d\? (4.8)
1+37+37

or
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g==zClw"cos® with C=

3 (4.9)
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121

The mass of the hinge, which is symmetrical with respect to
its axis, obviously does not influence the value of € in the
equilibrium situation. It is remembered that Eq. (4.9) holds
only for a rod of negligible thickness.

V. EULER’S EQUATIONS FOR THE CONICAL
PENDULUM

The conical pendulum can be treated in a mathematically
more elegant way using Euler’s equations for the motion of a
rigid body with one point fixed. We shall avoid the approxi-
mation of a thin rod and get an exact result by calculating the
moments of inertia of the rod.

We use a reference system that is connected to the rod and
whose origin is at the fixed point; x, y, and z are principal
axes of the inertia tensor of the rod with respect to the fixed
point.

The z axis is along the symmetry axis of the rod. We
choose the y axis to lay in the vertical plane of the rod and to
make an acute angle with the downward pointing vertical. Of
the Euler angles ¢, 6, and ¢, the last one can be set equal to
zero because of the hinge.

The motion in an inertial reference frame is a rotation )
whose components along the axes of the rotating frame are

Q,=4, (5.1)
Q,=¢sinb, (5.2)
Q. =¢cos 6. (5.3)
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Since the z axis is an axis of symmetry, I,=1,, I; being
the moment of inertia with respect to the i axis. Therefore,
the Euler equations become

NXZIXQx—QyQZ(Ix—IZ), (5.4)
N,=1,0,-Q.0.(,~1,), (5.5)
N.=1.0.. (5.6)

The N; are the components of the moments of the applied
forces (gravitational force and torque of the hinge on the rod)
along the axes of the moving reference system.

Only (5.4) does not contain a component of the torque of
the hinge on the rod and can be written

l+d
2

mg sin 0=1,0— w”sin Gcos O(1,—1,), (5.7)

with o= ¢, the constant angular frequency of the motor, and
m the mass of the rod. Since we are looking for equilibrium

in the y,z plane of the moving system, we can put §=0. As a
matter of fact, any motion in the y,z plane will soon die out
owing to air resistance and friction in the hinge. In that case
(5.2) reduces to

é+d mg sin = w” sin O cos (1, —1,). (5.8)
The solutions of (5.8) are
1. sin #=0, (5.9)
l
mg 5+d
2. cosf= m (5.10)

I,= imr? and I, , with x’ parallel to x and through the cen-
ter of mass of the rod, is known to be'!

12 2

p
= —+ — . .
I..=m nta (5.11)
Using Steiner’s theorem
[,=1.,+mé& (5.12)

with & the distance between x and x" (§=1/2+d) one gets

12 rZ
I.=m 3+ld+d2—z) (5.13)
and
12 r2
IX—Izzm(§+ld+d2— Z) (5.14)
(5.10) becomes
l
g §+d
cos 0= > e (5.15)
2| 21
| 3 +ld+d 4>
so that
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d
1+37+3

sl

1+2d
[

2 5 )
g=§C’lw cos# with C'=

(5.16)

VI. THE CONICAL PENDULUM IN THE
LAGRANGIAN FORMULATION

We write the Lagrangian in the rotating reference frame of
the first paragraph.
The pendulum’s kinetic energy in this frame is simply

T=13I,6% (6.1)

The centrifugal force as well as the gravitational force con-
tribute to the potential energy

! ' ) 2
V=—mg 5+d cos 0— Fo (1,sin” O+1,cos” 0).
(6.2)
The Lagrangian depends only on 6, w being a constant:
L : 1,67+ : +d|cos 0
= E x mg 5 COS
+ 3 w*(I,sin* 6+1_ cos® §) (6.3)
and the corresponding Lagrange equation
d | dL JL
—|—|——=0 (6.4)
dt\ gp) 90
becomes
i l . 2 .
1.0+ 5 +d|mg sin 6— w” sin O cos O(1,—1,)=0, (6.5)

which is identical to (5.7).

VII. CORRECTIONS

Using a plane pendulum, Nelson and Olsson® have per-
formed an experiment to determine the acceleration of grav-
ity with an accuracy of 10~ %. To obtain this accuracy, these
authors investigated the effect of some 16 possible correc-
tions which are analyzed in detail in their paper. We shall use
this analysis as a guide in determining the corrections in the
case of the conical pendulum. Nine of these 16 corrections
give rise to a relative error in the value of g exceeding 10™*
if not accounted for properly. Only one of these applies in
our case: the effect of buoyancy in the atmospheric air, a
correction that can be handled in a straightforward way.
Other important corrections for the plane pendulum are the
amplitude dependence of the period, the mass of the wire and
of the suspension device, and the ‘‘added mass’’ as a result
of the motion of the surrounding air which represents part of
the kinetic energy of the system. This air motion is obviously
also present in our system but it is the result of the work
done by the motor and the torque of the motor does not enter
the equilibrium equation.

There are, however, two corrections that apply in the case
of the conical pendulum but not in the case of the plane
pendulum. The first correction is, just like the buoyancy,
caused by the atmospheric air. Because the speed of a point
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Fig. 5. Calculating the speeds of the points A, B, and C on a diameter of the
rod.

on the ‘“‘outer’’ side of the rod is greater than that on the
“‘inner’” side, a lift effect due to the atmospheric air is to be
expected.'?

A second correction is needed because of the rotation of
the earth which produces a Coriolis force that influences the
motion of the conical pendulum. We first derive a formula
for the lift and buoyancy effects.

The magnitude of the buoyancy force is

wrilp,g (7.1)

with p, the density of the air.

Using coordinates x, y, and z as in the Euler equations, the
moment of the buoyancy force with respect to the fixed point
is (for d<<l)

py= (31 sin O)(mr’lp,g)u,
or (7.2)

pp=smr?l*p,g sin fu, .
The moment of the buoyancy force has a sign opposite to
that of the moment of the gravitational force. The ratio of the
magnitudes of both moments is simply the ratio of the den-
sities p; of the rod (e.g., brass) and p, of the air. With p,
=8500kgm ™ and p,=1.2kgm > (20 °C and normal atmo-
spheric pressure), p,/p,=1.4X10"%.

The corresponding correction is

A

28 axio0, (7.3)

8
In order to estimate the lift force we first calculate the speed
of three points A, B, and C of the rod. Using again the coor-

dinates x, y, and z of the Euler equations, the speed of a point

A on the symmetry axis can be written as
U,=wzsin 6. (7.4)

The point B has the same z value as A but lies on the outer
side of the rod. It moves on a circle with radius (z sin @
+rcos 6) (Fig. 5) and so its speed is

vp=w(zsin 6+r cos ). (7.5)
In the same way we find for the speed of the point C on the
inner side of the rod and with the same z as A and B
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Fig. 6. Flow of air around a cylinder.

V= w(zsin §—rcos h). (7.6)

Now we consider an arrangement of a cylinder with radius
r which rotates about its axis of symmetry with an angular
frequency () and at the same time translates with a velocity
U, perpendicular to the rotation vector. The points B’ and
C' on the surface of the cylinder and on a diameter perpen-
dicular to U, have velocities

UBr:U0+rQ, (773)

(7.7b)

if for B’ the velocities due to translation and rotation are in
the same direction and for C' in opposite directions.

If we now take ) to be wcosf and U, to be U,
= wz sin 6, then

UCr:UO_l"Q,

(7.8a)
(7.8b)

This means that for a particular value of z the velocities of
the points B and C on the rod of a conical pendulum are the
same as the velocities of B’ and C’ in the second arrange-
ment. This last setup is sketched in Fig. 6, where we have
assumed that the cylinder does not move, but that the wind
blows with a velocity —U,, which amounts to the same.
This is a familiar situation in fluid dynamics. It is well
known'? that, due to the rotation of the cylinder and the
viscosity of the air, the flow lines of the air are asymmetric
with respect to U,. This causes a lift force that is perpen-
dicular to both the rotation vector and the translational ve-
locity. The lower point in Fig. 6 is B’ because there the
relative speed of the cylinder surface with respect to the air
far from the rod is greater than in the upper point C’, just as
point B of the conical pendulum has the greater speed. In the
reference system of Fig. 6 (cylinder axis at rest) the speed of
the air near C' is increased by the rotation of the cylinder,
whereas near B’ the speed of the air is decreased. According
to Bernoulli’s theorem the pressure will be lower near C’
than near B’ and the lift force points from B’ to C'. Trans-
posing these results to the conical pendulum we see that the
rod experiences a downward force.
The lift force L per unit length is

vpr=wzsin 0+ wcos f=vp,

Ver=wzsin §—wcos 0=vc.

L=puU0Fuy (79)
with I" the circulation.
Assuming'* that the magnitude of the circulation is
= f{) v-dl (7.10)

with v the speed of the cylinder surface as a result of the
rotation, and dl a line element of the circumference of the
rod,
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2
FIJ Qr2de=2mr’Q (7.11)
(

)
and
L=p,(wz sin §)(27r’w cos Ou,. (7.12)
Substituting w from (4.7) for a thin rod, L. becomes
~dK 37 5
L= e T Pa8T2 sin fu,, .

The moment of dK with respect to the fixed point has only an
X component

(7.13)

=37
[

Assuming that we can obtain the total lift force moment
M. by integrating this expression over the length of the rod,
we get (for d<<l)

—zdK= p.gr?sin 0z% dz. (7.14)

=37 5 . L,
L e sinf | z°dzu,
0
or
(7.15)

We see that u;=—2pup: the moment of the lift force is
twice as large as the moment of the buoyancy force and has
the opposite sign.

The resultant correction Ag/g for both buoyancy and lift
is therefore the same as for buoyancy alone (7.3), but with
the opposite sign. Since this correction is much smaller than
1073 we shall neglect it.

The last correction is the one due to the Coriolis force
resulting from the rotation of the earth. It turns out that we
need only an order of magnitude, which can be estimated by
comparing the Coriolis force 2mo X @ and the centrifugal
force mao X (FX @) for a simple pendulum.

The ratio of the magnitudes of these forces is roughly

v()
— (7.16)

My =—mp,gril®sin fu, .

rw

with () the rotation of the earth.
Since v =rw, this ratio equals

Q

—. (7.17)

o)
The rotation of the conical pendulum is of the order of 10 s~
and the rotation of the earth is about 10”*s~! so that O/
~107°.

Aiming at a precision of 1073, the influence of the rotat-

ing earth can be neglected.

VIII. THE APPARATUS

A sketch of our apparatus is shown in Fig. 7.

A rod of length [ and radius r is connected to the lower
side of the vertical axle of a motor by means of a hinge with
a horizontal axle. A rotation of the rod around its axis of
symmetry is prevented by this connection. We use a stepper
motor with a 1.8° step angle.

The angle 6 between the rod and the vertical is determined
optically. A laser pointer projects a horizontal light beam
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Fig. 7. Sketch of the apparatus.

through the axle of the motor. During each turn of the coni-
cal pendulum, the polished rod passes twice through the ver-
tical plane containing the light beam and then reflects the
beam. We use the reflection when the rod is on the far posi-
tion from the laser (as in Fig. 7). The reflected beam traces
an arc onto a vertical scale for small 6 (from 0° to about 24°)
and onto a horizontal scale for 6 ranging from about 24° to
about 62°. The point of the arc which lies in the vertical
plane of the laser is read. If the spot is on the horizontal
scale, it follows from the geometry of the apparatus (see Fig.
7) that the angle 6 is determined by the relation

Yy

=X+ - .
X=Xy+htan 6 P~

cos 6 ®.1)
In this formula X is the distance of the spot from the vertical
scale; X, is the distance from the fixed point of the rod (i.e.,
the center of the hinge) to the vertical scale; Y is the dis-
tance from the (unreflected) laser beam to the horizontal
scale; and £ is the distance of the center of the hinge to the
(unreflected) laser beam.
For the vertical scale the relation is

Y=|X,+htan 6— tan2 6 (8.2)

-
cos 0
in which Y is the distance from the spot to the (unreflected)
light beam. Numerical values of the constants are: X,
=0.1657 m; Y7=0.1953 m; h=0.0112 m; and d
=0.0063 m. Rods with lengths up to Yq+/4—d=~0.21 m can
be used. Most experiments were done with a rod with [
=0.1m and r=0.003 m.

IX. RESULTS

The value g, of the acceleration of gravity at sea level can
to a good approximation be calculated from the ‘‘Interna-
tional Gravity Formula 1967.”"'> For our campus with a
North latitude of 50.864°, g,=9.8115m s~2. The correction
for the height € above the sea level can to a sufficient ap-
proximation be derived from Newton’s law of universal
gravitation
M
r_z.

¢=G 9.1)
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Fig. 8. g vs w for a typical measurement.

Writing R for the radius of the earth and Ag for the correc-
tion due to €, we have

€
1+—

gotAg= R 9.2)

=80

G
(R+¢€)?

or

€
Ag%—ZEgO. 9.3)
With €=25m, R=64X10°m and g=9.8ms 2, (9.3) be-
comes

Ag~—8X10"°ms 2
The local value of the acceleration of gravity is therefore

g=go+Ag=9.8114ms 2 (9.4)

A measurement of g with the conical pendulum involves the
determination of the three quantities /, w, and 6. The length [
of the rod poses no problem; it can easily be measured to
within 107%. An advantage of a stepper motor is that its
speed is completely determined by the frequency of the os-
cillator that feeds the power supply of the motor. This fre-
quency is measured with a timer/counter with an accuracy of
at least 107> and is therefore the best known quantity of the
three named above.

The main experimental difficulty in the conical pendulum
setup is the accurate determination of the angle # between
the rod and the vertical. Around #=45°, a relative error of
0.1% in the value of g corresponds to an error A #~0.06° or
about 0.5 mm on the horizontal scale. With the moderate
dimensions of our apparatus (the length of the reflected beam
is about 20 cm), the accuracy of our optical method is only
slightly better than this.

The result of a typical measurement is shown in Fig. 8. It
represents determinations of g using a polished stainless steel
rod with /=0.1m and r=0.003 m. The first 7 points corre-
spond to readings on the vertical scale; the next 12 points are
read on the horizontal scale. A plot of g vs w should of
course be a horizontal straight line. This is, within the limits
of accuracy, indeed the case for the points on the graph
which correspond to readings on the horizontal scale. At
lower frequencies, however, the measured value of g in-
creases with increasing w. This may result from the motor
axle not being perfectly vertical. Its effect on the measured
value of the acceleration of gravity can, to first order in 6,
be calculated to be

26,
tan2 6

*

g8=g 9.5)
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Fig. 9. 6 vs w for the measurement shown in Fig. 8.

in which 6, is the angle of the motor axle with the vertical
and g’ is the measured value of the acceleration of gravity
when the correction is not taken into account.

When calculating (9.5), it was supposed that the axle of
the motor lies in the vertical plane of the laser beam; in that
case the effect on the measured value of g is a maximum.
The minus sign applies if the motor axle deviates from the
vertical in the direction of the laser, and the plus sign if it
deviates away from the laser.

It turns out that the results shown in Fig. 8 can be ex-
plained in this way if one assumes that 6,~0.035° for a
motor axle in the plane of the laser beam (and a larger 6,
otherwise). Checking this value directly is, however, almost
impossible for a motor axle that extends only a couple of
centimeters from the body of the motor and that is covered to
a large extent by the hinge. Therefore only readings on the
horizontal scale—which constitutes almost 90% of the w
range—were used to calculate the value of the acceleration
of gravity, the points on the vertical scale being used only to
extend the range of the 6 vs w plot (Fig. 9) in the critical
region.

The average value of g from the horizontal scale points is
9.813 ms > with a standard error of 5X 10 >ms 2 The
result g=9.813%=0.005 is to be compared with the value of
9.8114 ms 2 calculated from the International Gravity For-
mula.

Since the angle 6 between the rod and the vertical is not
calibrated but deduced from the geometry of the apparatus, it
is necessary to determine the constants X, Y, and & with a
high precision. Almost all inaccuracies in the construction of
the apparatus and errors in the determination of these con-
stants result in a frequency dependence of the measured val-
ues of g. Therefore the frequency independence of the mea-
sured g values constitutes a very demanding test of the
apparatus.

X. CONCLUSION

As a means of measuring the acceleration of gravity, the
conical pendulum combines a number of advantages which
make it particularly suited for the undergraduate laboratory.

First of all, an accuracy of 1073 is better than is obtained
in most free fall experiments which are commonly used by
students for measuring g. Furthermore, the measurement is
very simple: just a reading of the frequency and of the place
of a light spot on an a scale. No corrections whatsoever are
needed to obtain the 0.1% accuracy. And finally, the sudden
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deviation of the rod from its vertical postion at the critical
frequency constitutes an element of surprise which is apt to
capture the student’s interest.

A drawback of the conical pendulum for measuring accu-
rately the value of g is the need for the utmost care in the
construction of the apparatus, as illustrated by the results for
small w in Fig. 8 and their possible explanation.

ACKNOWLEDGMENT

We thank G. Heremans for taking care of the electronics
of the system.

IT. W. B. Kibble and F. H. Berkshire, Classical Mechanics (Longman,
London, 1996), 4th ed., pp. 192—-194.

’Daniel M. Greenberger, ‘‘Esoteric elementary particle phenomena in un-
dergraduate physics—spontaneous symmetry breaking and scale invari-
ance,”” Am. J. Phys. 46 (4), 394-398 (1978).

3G. Fletcher, ‘A mechanical analog of first- and second-order transitions,”’
Am. J. Phys. 65 (1), 74-81 (1997).

Jean Sivardiere, ““A simple mechanical model exhibiting a spontaneous

symmetry breaking,”” Am. J. Phys. 51 (11), 1016—-1018 (1983).

SH. Klostergaard, ‘‘Determination of gravitational acceleration g using a
uniform circular motion,”” Am. J. Phys. 44 (1), 68-69 (1976).

K. C. Gupta, Classical Mechanics of Particles and Rigid Bodies (Wiley,
New York, 1987), pp. 44-45.

"Jean Sivardiere, ‘‘Spontaneous symmetry breaking in a Cavendish experi-
ment,”” Am. J. Phys. 65 (6), 567-568 (1997).

8Robert A. Nelson and M. G. Olsson, ‘“The pendulum-Rich physics from a
simple system,”” Am. J. Phys. 54 (2), 112-121 (1986).

Kenneth E. Jesse, ‘‘Kater pendulum modification,”” Am. J. Phys. 48 (9),
785-786 (1980).

10A. Peters, K. Y. Chung, and S. Chu, ‘‘Measurement of gravitational ac-
celeration by dropping atoms,”” Nature (London) 400, 849—-852 (1999).

""M. Alonso and E. J. Finn, Mechanics, Fundamental University Physics,
Vol. I (Addison—Wesley, Reading, MA, 1967), p. 292.

12We thank an anonymous reviewer for drawing our attention to the possi-
bility of such an effect.

3W. F. Hughes and J. A. Brighton, Theory and Problems of Fluid Dynamics
(Schaum, New York, 1967), pp. 120-122.

See Ref. 13, p. 132.

See, e.g., P. Vanicek and E. Krakiwsky, Geodesy, the Concepts (North-
Holland, Amsterdam, 1982), p. 79.

UNDERGRADUATE SORCERY

As an analogy, consider a quantum sorcerer’s apprentice who has been given the task of
constructing a chimaera. Suppose that this is undergraduate sorcery, so that only a two-component
chimaera is required; a lion—goat superposition, say. The apprentice captures a pure lion state L,
puts it into a cauldron with a pure goat state G, and starts stirring. After having swished the mixing
ladle a certain number of times around the pot, the chimaera is declared done and is taken out for
inspection. To what extent is it a lion, and to what extent a goat?

Vincent Icke, The Force of Symmetry (Cambridge University Press, Cambridge, 1995), pp. 94-96.

711 Am. J. Phys., Vol. 68, No. 8, August 2000

A. Dupré and P. Janssen 711



