An accurate measurement of g using falling balls
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We describe an experiment to determine the acceleration due to grgvitith an accuracy of
about 1 part in 1 The experiment was designed to expose students to critical thinking in
collecting, selecting, and analyzing data, and interpreting the results9.99®American Association of
Physics Teachers.

[. INTRODUCTION believe that it is also educational for the students to learn
) o i i _how to read the vernier scale on the caliper. The caliper is
~In teaching statistical analysis of datq in the Iaborator_y, itmounted on a solid base with adjusting screws to permit tilt
is useful to make measurements on a simple system which igjjystment, and additional support structure provides vibra-
familiar to the student. The measurement of the acceleratiofgyp, damping. The entire apparatus is metal and is grounded
due to gravity,g, by observations on a falling object is such g prevent electrostatic charging, which can affect the motion
a system, and we have found it instructive in exposing stugy falling balls.
dents in our junior-level laboratory tg? analysis. We have The ball release mechanism, shown in Fig. 2, uses a
designed an experiment with sufficiently high precision thatpiston-cylinder arrangement to create a partial vacuum to
students cannot easily look up the expected result; this ovehold the 1.9-cm-diam balls. The device is armed by pressing
comes a common problem in beginning laboratories, i.e., thg ball against the lower air inlet and pulling the piston back
“how close did | get to the right answer” syndrome. until it ratchets. The mechanism is then placed in a fixed
In principle, g can be determined by measuring the time position on the movable upper jaw, approximately 0.5 cm
for an object to fall through a known distangeand by ap-  above the first light beam. A small hole in the cylinder wall
plying the simple formuly= 3gt?. With simple electronics, allows the air pressure inside to increase slowly, and the ball
it is straightforward to measure time intervals to a high pre-s released after a few seconds, when the pressure has in-
cision. A problem arises, however, if an object is to becreased sufficiently. The advantage of this suction device is
started from rest: There is no simple means of measuring that it does not introduce any observable vibrations or per-
start time with sufficient accuracy, or of making a releaseturbations when a ball is released. In addition, it works with
mechanism which will respond instantaneously to an elechoth plastic and metal balls so that significantly different
tronic signal. For precision results, we have found that it ismasses can easily be used, an important consideration in
necessary to measure the fall time between two differeninaking drag corrections.
heights during the motion. We have found that it is possible The light beams are provided by infrared light-emitting
to measure the time for a spherical ball to fall between twadiodes (LEDs) (FD1QT) shining through 0.75-mm-diam
light beams upd 1 m apart with a precision of a few tens of holes and they are detected by infrared photodiodes
microseconds. It follows that, by measuring the distance befPN334PA located behind 0.75-mm-diam holes. As a ball
tween the two heights to better than 0.1 mm, it is possible tdalls between the two light beams, the resulting pulses gen-
measurgy to about 1 part in 10 erated by the photodiodes are strongly amplified, and a cir-
In an experiment with this precision, the effects of air cuit consisting of two comparators is used to generate a pulse
buoyancy and drag on a falling ball become significant. Byfrom an RS-type flip-flop. The width of this pulse is equal to
making observations on identically sized balls with differentthe time between the start and stop pulses and this can be
massegwe have used stainless steel and nylon batlss measured, for example, by a Philips PM2525 meter operated
possible to derive a correction for these effects. in its period measuring mode. We have found that the typical
uncertainty in fall times is about 4fs, independent of the
distance fallen.
Il. APPARATUS Vertical alignment of the apparatus is necessary; the two

The main components of the apparatus are shown in Fidi.ght beams must lie within-1 mm to the ver.tical to avoid a
1. They consist of a caliper, a ball release mechanism, twgyStématic error of more than a few parts ir* 18dequate
pairs of light emitter sensors, an electronic amplifier and trig-2lignment can be accomplished with a plumb bob and a tar-
ger circuit for the sensors, and a commercial period measu@€t. both of which can be mounted in the holes through
ing instrument. The modified, commercial 100-cm caliperWh'Ch t_he balls fall. Leveling screws in the base provide for
has a nominal resolution of 0.02 mm and forms the backbon#is adjustment. . _
of the apparatus. The balls are dropped through holes in a We have found it useful to provide a sand-filled box to
pair of aluminum blocks which are rigidly attached to the catch the balls. This not only prevents the laboratory being
jaws of the caliper; the lower jaw is fixed while the upper filled with bouncing balls, but also preserves the surface of
jaw can be adjusted over the entire length of the caliper',fhe balls.(Brass balls were found to be too easily deformed
allowing the balls to be dropped over a range of heights fronin hard bounces
5 to 100 cm. The optical emitter-sensor pairs are mounted oul THEORY
opposite sides of the blocks. Greater accuracy could have
been provided by a screw-type system but the caliper accu- The equation of motion for a ball of massfalling in air
racy is compatible with the achievable timing accuracy; weis
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Fig. 1. The apparatughe release mechanism is not shgwn
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wheremy; is the mass of displaced air afd,qis the drag

the equation of motion becomes

d?y k [dy)?
Wﬂ)s‘a(a : ()
which can be integrated to give:
2
ooy |
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wherev is the terminal velocity of the bally+=ymgg/k.
This expression can be inverted to givas a function of

y:
v
t= —Tcoshl( ex;{ %) ) , (5)
Os V1
which can then be expanded to a more useful form:
_2y(. 1(gey| 1 (gey|\®
t= E(l'ﬁ‘g(v—% +m V_12— + . (6)

We need only consider the first two terms of this series,
which contain the effect of drag to first orddifhe maxi-
mum value of the second term amounts~toa few times
10"2 in the present experimehtSubstitutinggg from Eq.

(2) and keeping terms to first order yields

2y 1 Mgy ky
NGl ])
This gives the time taken for a ball to fall from an initial
heighty=0 and demonstrates more explicitly the effects of
both buoyancy and drag.
Now we consider two separate balls of mass and mg
with identical shapdsamek) which take timed, andtg to

()

force which is taken to be proportional to the square of ve{y|| petween heighty, andy,. Thus, for example,

locity, i.e., Faag=k(dy/dt)?. The quantity k=0.5Cp ;A

wherep,; is the density of airA is the cross-sectional area
of the falling ball, andC is the drag coefficient, which is
essentially constant for the velocities of concern héez.

varies between 0.50 and 0.45 for Reynolds numBarsthe
range 16— 1C; for 2-cm-diam balls falling upd 1 m inair,
the maximum value oR is ~5x 10°.%)
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Fig. 2. The ball release mechanism.
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which can be written as

1
A=t t m—Af(Y1:Y2)’ 9

where we have defined a quanttty as

2 2
Y o LI LY (10
g g

which would be the time taken for a ball of infinite mass to
fall between heighty,; andy,, i.e., where there are no ef-
fects of drag and buoyancy. After writing a similar expres-
sion fortg, it readily follows that
tAma—tgMm
= Allla— g B. (12)
Ma—Mg
Thus for each value of, we can determing, from the two
measured fall times and the masses of the béiiée note
that the effect of buoyancy drops out in the final analysis.
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Some simple manipulation then yields the familiar equa- 43.51
tion

Ay=y,~y1=39t2 +vit.., (12) . ]
wherev,=/2gy; is the velocity of the ball after it has fallen

a distancey,, i.e., its initial velocity when it passes the first . .
light beam. Finally, this equation can be linearized = . .

Ay 1 42.5 . . .-
==Vt 5ot 13 eaaan

so that a grapiAy/t,, vst.., which is determined from mea-

sured quantities, should be a straight line with slgf#and B DY S g
a standard least-squares fitting program can be used to ana
lyze the data.

8 (cm)

Fig. 3. x? vs assumed caliper offsétin centimeters(43 data points.

IV. DATA COLLECTION AND ANALYSIS A typical graph ofy? vs & is shown in Fig. 3. From these
data, 6=1.03770.0014cm. We then findv,;=29.817
First, students make several measurements of the time re=0.007 cm/s andj=980.38+0.06 cm/4, where the quoted
quired for a ball to drop some fixetly in order to assess the errors are statistical only.
timing uncertainty. It is then suggested that they make an
initial error analysis to determine an optimum strategy forV. SYSTEMATIC ERRORS
data taking. The balls are weighed and their diameters mea- \xjhen an experiment aims for high precision, it is inevi-

sured. Timing measurements for each ball, one steel and oRgpe that systematic errors become significant unless special
nylon, are made at 20-30 values &y over the full range, care s taken. This is certainly the case here. Any systematic
up to 100 cm, with 2 or 3 measurements made for each poinincertainty in the time measurements is negligible compared
to detect any immediately obvious systematic timing erroryg the statistical spread, but there are possible systematic
The value oft., can be calculated from these data. uncertainties in the measurements of the distance fallen by
A problem appears in the determination &y, since the the balls.
vernier scale readings on the caliper give only the relative We have already mentioned that the apparatus must be
displacement between the two light beams, because of offaiccurately aligned vertically so that the centers of the balls
sets that cannot easily be determined directly. In addition, theass through both light beams. Analysis shows that the frac-
absolute value ofAy also depends on the exact positionstional error ing arising from a misalignment of the apparatus
where the ball intercepts the light beams and on the thresholdy a small angled from the vertical is
settings of the comparators. To determine the ofi$dte- Ag vy @2
tween the actuaby and that obtained from the caliper read- ——== —, (15)
ings, trial values o can be added to the observed values of g R2

Ay. The best estimate afis that which minimizeg? inthe  whereR is the radius of the ball ang is the height fallen.

straight line fit of Ay/t,, vst... x? is defined as Thus for R=0.95cm(the present cagey=100cm, andd
n n 11— (/) )2 =103, i.e., assuming that the center of the ball passes
2= y2=> (YD)~ (YD) (14) through the upper beam and that the lower beam is displaced
. P 2 ) : ; . ;
i=1 i=1 (ayn)i by a nominal 1 mm, then the estimated systematic errgr in

from a possible vertical misalignment #0.05—-0.00 cm

(Such a misalignment leads to a value gfwhich is low
since the ball must fall a greater distance before it interrupts
the lower light beamn We note that this uncertainty is ap-

¢ e, N v d hi h stud he util fproximately equal to the statistical uncertainty in our result,
or example. Not only does this teach students the utility ol that doubling the nominal displacement of the lower

spreadsheets, but setting up their own spreadsheets aIIovggam, to 2 mm, would result in our result fgbeing low by

them to examine the? of each point, to check for bad data ¢ 20 cm/& Accurate vertical alignment of the apparatus is
points, and to check for trends. These features are not geissential(We note that the Coriolis deflection of a ball fall-
erally available in inexpensive commercial data analysisng 1 m isonly 0.018 mm and is of no consequence in the
software packages. present cage

It is particularly instructive for the students to inspect the' Determining the uncertainty in the absolute length of the
plots of Ay/t.. vst., as a function ofs, along with the cor-  caliper presents a more difficult problem. Calipers are gen-
responding value of?. When the totaj? of the fit has been erally initially calibrated at a temperature of 20 °C. Our cali-
minimized by choosing the best value &fthe fit automati-  per is of uncertain origin, but assuming a nominal tempera-
cally gives the value ofy with its associated uncertainty. ture coefficient of expansion 0110 ° °C and assigning an
Observing the absolute value of the minimyh and com-  uncertainty of=3°C to the temperature at which the mea-
paring this with the number of data poinfsr, more pre- surements were made, we can estimate a systematic uncer-
cisely, the number of degrees of freedogives the student tainty in g of =0.03 cm/4. We have attempted to calibrate
an appreciation of the importance of error assignment. the caliper using a coordinate measuring machivisich has

where (@,); is calculated from the estimated uncertainties
in y andt.

All the fitting is done using an Excel spreadsheet in which
students use equations as giverNimmerical Recipes in €
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a nominal resolution of~0.01 mm and have shown that

there are likely slight distortions of the caliper in the region  '31
where it is supported by a screw at its center. Such distor-
tions have only a small effect on the determinationgof
compared to uncertainties in the full length of the caliper. ;

We are uncertain of the absolute calibration of the coordinate__ 1€+ I II
measuring machine, but assign a nominal uncertainty of 0.1@" I ]
mm in the absoluté100 cm length of the caliper, roughly =

the size of the local distortions. This corresponds to a pos- .
sible systematic uncertainty af0.10 cm/3 in our measure- 186 I III
ment ofg. This latter uncertainty is almost twice as large as

the statistical uncertainty in our measurement; it could be

reduced by using a caliper of more certain pedigf@ed . :

expensg ! © 1
We have found that, even for the smallgstnylon balls

take a m_easurably |0nge_r time than steel balls to f"’_‘” betwee'gig. 4. At, excess fall time due to drag, ys, the total height fallen. The

the two light beams, typically 30@s for Ay=2 cm, imply-  solid lines show the fits tg3?2.

ing that the balls must pass through the first light beam with

slightly different initial velocitiesv,. This is likely to have

only a very small effect on,, because of the dominance of

the much more massive steel balls in calculating this quan\-/l' DETERMINING THE DRAG COEFFICIENT

tity, but the magnitude of the effect must be evaluated. The

effect is such that it appears that the nylon balls fall from a rgsrgirgnefg??rt,'grésiffgfgﬁfepggtﬁ:&e;},;thganqegzﬁar';j:tn ex-
slightly smaller height than the steel balls, so that their initial”

velocity v is slightly smaller. Fits to the data fgrless than each height, demonstrating directly the effects of buoyancy

10 cm, where drag is negligible, and allowing badtandv, and drag on the fall times, i.e.,
to vary, indeed show that both steel and nylon data yield the Mgir k 2

it 32_ 302
sameé but that the nylonv, is significantly smallercorre- At=t-to=5 tet =0 g (Y27 —y19, (18)

sponding to an effective difference in the heightof 0.013 . .
c?n in th?s casg Since the diameters of the bgflﬂls have beenvhere the first term gives the effect of the buoyant force and

measured to be the same within 0.003 cm. we assume thHie second the effect of drag. The result of subtracting the
the effect is due to the existence of a partial vacui@er- small buoyancy term from the values &t and plotting the

noulli effech which exists just after the ball is released, act-remainder versug,(=Ay+y,) is shown in Fig. 4. The lines
ing to reduceg effectively over some short distance. The show the predicted variation g§”>. While this graph shows
effect would be greater for the lighter nylon ball. A simple that the data prefer a variation less than the power 3/2, an
correction for this effect can be obtained by differentiatingacceptable/? is obtained for the fit to the predicted behavior.

y, (cm)

the equation of motion for a falling ball Using only the data beyongl,=50cm and the measured
y=v,t+ gt (16) masses, we findk=(8.43+0.11)x10"° and 8.45 0.4_18
_ X 107 % N/m?/s* for the nylon and steel balls, respectively.
to give Taking the density of air to be 1.380.01 kg/n¥ (at 20 °C
dv, and 50% humidity> we determine the drag coefficief
dt=-——7" (17 =0.50+0.01.
gl 1+ a
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