Variable mass oscillator
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We studied the motion of a variable mass oscillator. The mass used is a container full of sand that
loses sand at a constant rate and hangs from a spring. The spring was suspended from a force sensor
connected to a data acquisition system that let us study the evolution of the system. In the
underdamped regime we identified three distinct types of behavior for the system, depending on the
relation between the energy loss due to the exit of mass and the energy loss through friction. The
experimental results are well described by both the numerical solution to the equations of motion
and our model, which makes it simple to predict the different types of behavior and to assess the
relevant physical parameters involved in the dynamics of this systeneoo®American Association of

Physics Teachers.
[DOI: 10.1119/1.1571838

[. INTRODUCTION and measuredn(t). Because the geometrical shape of the

. . L system is the same, so is the friction force for all the flow
Variable mass systems are seldom discussed in introdu¢sies ysed.

tory physics courses, but offer an interesting and instructive gecause the container is accelerating, it is not obvious that

perspective on Newton's second lav. e presenta simple, he flow rate will still be constant. To study this issue experi-

inexpensive, and novel device that can be easily constructe,qenta”y, we hung the spring with the bottle from a fixed

and used with introductory and intermediate students of mesgint. Then we hung a bucket from the sensor that was

chanics. We address the question of how the natural freplaced below the oscillating bottlsee Fig. 2 In this man-

quency of a harmonic oscillator changes with time if the ner e were able to compare the flux rate when the bottle
mass of the system varies. In particular, we determine if the, o< still and when it was oscillatingig. 2
relation o

k
0= \[E (1) ll. EXPERIMENTAL RESULTS

Using the setup illustrated in Fig. @ipper pangl we
studied whether the flow rate changed during the oscillations
= m(t).4 of the b_ottl;a. We detected no qhange in the flow rate during

A d din Ref. 5 the flow of a aranular mater'althe oscillation of the system. Figure(Bwer panel shows a
h S h|scusse In Ret. o, W of a g udl : 'ht pical result. The slopes in both cagesttle oscillating and
Ler%l;]% o?ntr?epe(r:]:)rrgn:ﬁ C(;)fn?{;[‘laentg;PartlllrJT;’, Eg?erriaelssinotr:e tationary are the same. We performed a fast Fourier trans-
container® The constant flow rate property of granular ma- form (FFT) on the data fom(t) anddm(t)/dt and searched
terials lets us study the case in which the mass of the oscif®' components of the FFT that corresponded to the fre-
lator decreases linearly with time. Furthermore, because tha-€ncy of the oscillation or its harmonics and found no cor-
flow rate of granular materials depends on the area of théelat'on' We thus cqnclude that, V\."th'n the sensitivity OT our
opening®” we can control the flux of sand System(5%), there is no change in the flow rate for either

' ' case. This result is not trivial, because if the bottle were

falling with an acceleratiomy, the local acceleration of grav-
Il EXPERIMENTAL SETUP ity, we would expect the flow rate to be zero. In our case the
' maximum values of the oscillator acceleration were much

The experimental setup consists of an inverted plastic sodgss thang with (a(t))~0. This result justifies our observa-
bottle filled with sand and hung from a spring, which in turn tion that the flow rate is independent of whether the bottle
is suspended from a force sensor connected to a data acqWas stationary or oscillating.
sition system, as illustrated schematically in Fig. 1. We used By using different lids, we studied the behavior of the
openings of different sizes in the lids of the bottle to studyoscillator for different flow rates. We observed three distinct
the behavior of the oscillator for different flow rates. To char-types of behavior according to the flow rate as illustrated in
acterize the variation of the mass with time and measure th€ig. 3. Figure 4 illustrates the variation of the peridgd
flux rate, we simply hung the bottle from the force sensor=2x/w as a function of time. We observed thatwas well

where k is the spring constant anch is the mass of the
system, remains valid if the mass is variable, that ignif
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Fig. 1. Schematic of experimental setup. The spring is hung from the force 300
sensor which is connected to a data acquisition system. The bottle with sani®
is the variable mass system. Lids with different size openings are used t(‘E"

study oscillations for different flow rates.

described by the relatiom?=k/m(t). This result will be a

useful bench mark to further constrain the theoretical mod-

els.

V. THEORETICAL CONSIDERATIONS
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Fig. 2. Upper panel: Schematic diagram of experimental setup 2. The bucket

The equation of motion for a variable mass system thats hung from the force sensor which is connected to a data acquisition
loses mass at a rate=—dm(t)/dt, such that the mass system. By replacing the spring by a string, we can analyze whether there is

leaves the container with a velocityrelative to it, can be
written as"’

B P(t) dv dM

F W:M(t)a_qﬁ. (2

We assume that the relative velocity, of the sand, at the

moment it leaves the container is equal to zero. Conse-

quently, there is no thrust in our case, and therefore

dv

The air drag friction forcel;, of an object moving in a fluid
at low velocities is proportional to the velocitl;= —bv,

where the constant of proportionalitydepends on the ge-

ometry of the object and the viscosity of the fl§idhe pa-
rametersk andb can be measured independefitly.

According to Eq.(3), the equation of motion for our sys-

tem is
d’x  dx
m(t)Weranka:O. (4)

If we multiply Eq. (4) by dx/dt, we find
d’x dx  dxdx dx
Wa+baa+k'xa:0'

The derivative of the kinetic energ¥,, of a variable
mass system can be written as

m(t) )

dE, 1 dm(t)(dx 2 . dx d°x 6
at "2 gt \ar) T™Wgt ge ©)
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any variation in the flux due to oscillations. Lower panel: Experimental data
of the mass as a function of time. The triangles indicate the data for a fixed
bottle and the squares are the corresponding data for an oscillating bottle.
The flow rate remains constant and has the same slope in both cases. No
correlation was found between the FFT spectrum(if) anddm(t)/dt and

the frequency of oscillation of the bottle.

Because the potential energy of the spring Es,
=1/2k.x?, Eq. (5) can be written as

d(Ex+Ep) 1dm(t)(dx)2+ (dx>2=o.

gt 2 at \at) "Plat @)

In our casem(t)=mgy—ct, anddm(t)/dt=—c. Therefore,
Eq. (7) becomes
Lc dx)\2
2/\dt)

d(Ex+Ep)
dt

Equation(8) quantifies the energy loss of the system by
friction and mass los¥ We can use Eq#8) to determine the
variation of the amplitude of the system with time. We shall
express this amplitude agt) =A, f(t). If we consider two
consecutive oscillations, the time rate of energy loss can be
written as

d(Ex+Ep d (1 c\, ,

T—a(zkA ~T\br3)0n
where(v?) represents the mean square average of the veloc-
ity over a particular period and is estimated Byw?/2,

wherew is the angular frequency associated with the corre-
sponding period. We can further approximaié~k/m(t),

®

(€)
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Fig. 4. Variation of the square of the measured period of oscillatibf3?,

as a function of the mass. The linear variation is clearly visible, in agree-
ment with the prediction of Eq(1). Circles represent data collected for
=2g/s flow rate £<1), squares foc=15g/s g~1), and triangles for
c=9009/s <1).

“H le.um,

A()=Aof(t)= Ao(l—Ct) , (11
Mg

with e=b/2c+ . The termb/2c represents the ratio of the

energy loss by friction and the energy leaving the system due

to the mass loss. Note that the concavity of the envelope,

characterized by the sign of the second derivative of(EL.

HWHHHH

-8 T T T T T

o 10 20 8 40 5 & 70 depends on the value af If £>1, A"(t)>0 and the enve-
Time (s) lope is concave; the opposite is trueei< 1, and fore=1
6 A"(t)=0. If we consider the limit of Eq.(11) when 7
(c) =ct/my goes to zerdthat is,c—0), we obtain
T - :
" ” H n lim A(t)=Agexp — 5—t (12
7—0 2m Mo
2 4

z which is the well-known result for the variation of the am-
Sortd4441tT++FHATTFHTAT plitude with time for an underdamped harmonic oscillator. It
x is interesting to note that the limit—0 means small fluxes

or, equivalently, a time scale much smaller thrag/c, that
“ u is, when the bottle is far from being empty.
There are two interesting special cases of @4):

4_U U U U u M u h UU (a)szl(b/zc;%) Iead-sto

ct
0o 1 2 3 4 5 6 7 8 9 10 1 A(t)=Ao(1—>. (13
Time (s) Mo

In this case the amplitude decreases linearly with time, simi-

Fig. 3. Experimental variation of position(t), as a function of time, for lar to the behaV|or illustrated in Fig(19.
the three types of underdamped oscillations. The common friction coeffi- (b) &= (b/20<1) leads to
2

cient is b=25 g/s. (a) Typical behavior of the underdamped oscillations
corresponding to low flow rateg=2 g/s ande>1. (b) The flow rate isc 1/4

:_15 gls gndawl. ((;) Highest flow ratec= 904g/s and§<1. Notice the A(t)_AO( 1— ) . (14
different time scale in the three cases, which scales with the mass flow rate. m

Equation(14) represents the most convex envelope, that is,
the second derivative of E§14) is as negative as it can be.

In this case the energy loss is dominated by the exiting mass.
Figures 3 and 5 illustrate three distinct types of behavior and
indicate how well our model describes the experimental data.

which is consistent with our experimental observati¢see
Fig. 4). These approximations combined with E§) lead to

/ \ Now that we have obtained an adequate description of the
dA 1 c\ A : . : :
— a ( + ) . (100  amplitude, we will find an approximate solution to Eg) by
dt 2 2/ m(t) making the ansatz:
The solution of Eq(10) is X(t) =Apf (1) sin(h(t)). (15
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14 Fig. 6. Comparison of the experimental resultx¢f) (open circleg for the
case illustrated in Fig.(8), together with the prediction of our modgight
0 ‘ . . ‘ . ; ‘ solid ling), Eqg. (16). The agreement is excellent for all casgkfferent
0 10 20 30 40 50 80 70 values ofe). The heavy solid line represents the envelope predicted by Eqg.
Time (s) (12). When the bottle is running out of sand, we begin to see the limitation
s of the model, as would be expected from EB).

where, as usual, the constaits and ¢ are determined by
the initial conditions of the system, arg(t) is given by

NN ==

17)

According to the Appendix, E¢16) is expected to be an
adequate solution to E@4) as long as the condition,

(b+c¢/2)(b+3c/2)
K <m(t), (18)

2.
ho(T)ZTB

is satisfied. Therefore, we can expect our model to be inad-

Time (s) equate when the bottle is close to running out of sand.

V. DISCUSSION

In Fig. 6 we present the experimental resultsx¢f) to-
gether with the predictions of our model. In all the cases we
studied, the agreement is quite good. Furthermore, we also
compared the approximate solution of our model, Bd),
with the numerical integration of Edq4). Again, there is
excellent agreement between these two approaches. We note
that although the numerical integration of E4) is straight-
forward, it hides the physics, which in our approximate
model, Eq.(16), is clearly apparent. For example, suppose
that we wish to obtain an approximate expression for the
variation of the period of the system with timé&(t). We
define the period as the time interval over which the phase
changes by 2, that is, from Eq(A5),

o 1 2 3 4 5 6 7 8 9 10 M
Time (s)

Fig. 5. Variation of the amplitude as a function of tin{e) Low flow rate t+T
case,c=2g/s >1) [Fig. 3@]. (b) c=15g/s €~1) [Fig. 3b)]. (c) c h'(7)dr=h'(t)T(t)=2m. (19
=90 g/s £<1) [Fig. 3(c)]. The circles represent the observed data obtained

from the peaks of the oscillations. The numerical integration of&qusing Therefore, using E(;(,l) for the frequency, we obtain
MatLab is represented by triangles. The lines correspond to the prediction of N
4w ) m(t)

our model, Eq.(11). The agreement among the numerical integration, our 2
model, and the data is excellent. t)= wz(t) ~4m K - (20)

This connection between the period and the mass is clearly

illustrated in Fig. 4, which also shows the advantages of
If we substitute Eq(15) in Eqg. (4), we can findf(t) and  having a model. Finally, our model also helps us to interpret
h(t). The details are discussed in the Appendix. Thus, théhe physics behind the change in shape of the envelope of the

solution to the differential equatio@) is oscillator according to the magnitude of the flow rate. As
ot)e discussed, the total energy of the system is related to the
- _ 2 6 amplitudeA(t) of the oscillation according to Eq9). The
X(t) Ao( 1 mo) sin(ho(t) + ¢), (16)

rate of energy loss of the system depends on two mecha-
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nisms: friction and mass loss. If the mass loss is negligibquhere’B:% /(b+%c)(b+§c) a=B2Imek, and 7=ct/m,.

(c~0), the variation in time of the envelope is concave, Ea. (A he famili i
[A”(t)>0] and is similar to the familiar exponential de- ;: en7—0 (¢—0), Eq.(AS) reduces to the familiar equa

crease of an underdamped oscillatory system. As the energy
loss due to the exiting mass becomes more important, we k b?
expect the amplitude to decrease in time more rapidly. When  No(t) —ot=| \/{-— 7= 1, (A6)
. o My
the two energy loss mechanisms are comparadtel(), the
envelope becomes linear. If the flow rate increases evewhich is the expected result for the constant mass harmonic

more, so does the rate of energy loss, and we expect ttescillator. . .
amplitude to decrease in time even more rapidly than lin- The solution to Eq(4) according to our model is

early, and therefore the envelope becomes confXt) ct)®

<0] as in Fig. 3c). x(t)=A0(1— m_) sin(hp(t) + ¢), (A7)
0

ACKNOWLEDGMENTS whereh(t) is given by Eq.(A5). If we substitute our solu-

This work was carried out as an undergraduate laborator on for h(t) into Eq.(A2), we f'r.“.j that Eq(A7) is a solution
f Eq. (4) as long as the condition,
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is satisfied. This constraint is equivalent to the well-known
APPENDIX: MODEL SOLUTION OF THE condition for underdamped oscillations for constant mass
EQUATION OF MOTION (c=0). Equation(A8) is equivalent to

We wish to find a solution for the equation of motion, Eq.  (b+c¢/2)(b+3c/2)
(4). For this purpose we substitute the ansatz in @#§) in 4k <m
Eq. (4) and separately equate the coefficients oftgi) and
cosh(t)) to zero. We obtain a sufficient condition for the
solution of Eq.(4). This procedure yields

(t). (A10)

Therefore, we expect our model to become less adequate
when the bottle is close to running out of sand.
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