On the rise and fall of a ball with linear or quadratic drag
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We review the problem of a vertically thrown ball, with a drag force which is either linear or
quadratic in the speed. It is stressed from the outset that these two types of drag correspond to
specific ranges of the Reynolds number {Reand 16<Re<2x10°, respectivelyand do not hold
outside these intervals. We also include the buoyant force in our treatment of the problem. The
equations of motion are solved analytically and several true-to-life examples are discussed. The
calculations are somewhat harder than for the well-known case without drag force, but no highbrow
mathematics is required and the extra effort is amply compensated by the gain in realism and
surprise value. ©1999 American Association of Physics Teachers.

I. INTRODUCTION 24 6

Cy(Re~ —+ ——=+0.4.
One of the classic problems of physics concerns a spheri- Re 1+ \Re

cal object moving vertically through a resistive medium. One

may think for instance of a cannon ball shot up into the air,In the limit for very small Reynolds number, say Rg, the

or of a grain of sand sinking slowly to the bottom of a lake. first term dominates and we may ignore the second and third

If the resistive force (v) is either linear or quadratic in the terms. With C4(Re)=24/Re=1275/pRv and A=wR? the

velocity, the problem admits an analytical solution, and thisgeneral formula in Eq(1) then reduces to

will be the main topic of the present paper. First of all, how-

ever, we discuss when these two particular forms of resistive F(v)=6myRv. 4

force actually occur. Both correspond to a specific interval of

the Reynolds number and can be derived from the followingrhis is known as Stokes’ formula. It tells us that the drag on

©)

general formula: a (very) slowly moving sphere is linearly proportional to its
1 2 velocity. The formula applies to the sinking grain of sand
F(v)=32CapAr”. (D) mentioned abovéwe shall come back to this example in

Sec. 1), to micro-organisms in watéror to tiny dust par-

ticles floating in air. Generally speaking, though, the condi-
tion Re<1 is rather restrictive and rarely met in practice.
This has not prevented the linear drag force or ‘“viscous

called stationary situation, and that in genefiély varies friction,” with its appealing simplicity and nice theoretical

one should also take into account the Boussinesq—Basset vi%?rﬁglrgﬁ)(e];%hnbg?gm?ﬁ gl?r?grfg(\jlgartiteedt;gett])? d'::%?:g'ﬁ]n
cous memory force and the “added mass” terrnihese !

o . . . .. the physics literature.
terms are especially important if the density and the viscosity The second interval we focus upon is*4(Re<2x 10°

of the medium are large. On the other hand, they complicate NN :
the calculations to such a high degree that we choose tghere the drag coefficient is sefirom Fig. 1 or Eq.(3)] to

ignore them. e approximately constan€4~0.4. In that case Ed1) re-

The most intriguing element in Eql) is the drag coeffi- duces to
cient; it depends in a complicated way on the Reynolds num- 2 2
ber (Re), as depicted in Fig. 1(This figure can be found in F(v)=0.20mRv". ®)
almost any textbook on hydrodynamics, see, e.g., Refs. 3and ] ) ] o
4) So in order to use the above equation one first has t&0 in this regime the drag on the sphere is quadratic in the
know the value of Re. This dimensionless number is definedelocity. It applies for instance to a pebble dropped from the

HereC, is the so-called drag coefficientthe density of the
medium,A the object’s cross-sectional aréa the case of a
spherewR?), and v its velocity. It should be noted that Eq.
(1) is actually only valid in the case of constamtthe so-

as follows?! Leaning Tower of Pisaexcept for a fraction of a second at
the very start, see also Sec.)lbr a sky diver and is com-
plv monly known as “air drag.”
Re= 7 2 As mentioned before, for the above two forms of the drag

force the problem of a vertically thrown ball can be solved

wherel represents the characteristic length scale of the obje@nalytically. In practice, of course, one often goes outside the
in the cross-sectional plari the case of a sphere this is just domains of linear (Re1) and quadratic drag (¥6Re<2
the diameter R) and » the dynamic viscosity of the me- X 10°). For instance, for a bullet shot upwards with an initial
dium. Reynolds number of ) Re will pass through every value

In the hydrodynamic literature one finds several formulasrom 1 to zero, at the top of the trajectory. Nevertheless, in
to describe the curve of Fig. 1, most of which are restrictectertain cases the drag force remains linear or quadratic dur-
to a relatively small range of R@ee Refs. 4-)7 An excep- ing (almos) the whole trajectory and we restrict ourselves to
tion to this rule is the following curve-fit formula, from Ref. these. It should be noted that several of the calculations to be
4, which holds for all B<Re<2x10°: presented can be found elsewhere, scattered throughout the
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will be changed by the dragand buoyantforces. It is per-
haps a good idea, before reading on, to try to preuetthe
various quantities will be changed. A few simple experi-
ments may help. For instance, will the time to go up still be
equal to the time to come down? Will the total timg,
+t4own) b€ longer or shorter thani@/g? And how much
will the final velocity differ fromv,? We shall come back to
these questions in due course.

Il. LINEAR DRAG
0.06 1 | PPN B I [ Y R
10 1246810 10° 10? 104 re & 10° The equation of motion, along a vertical path, for a sphere

with linear drag[as in Eq.(4)] reads:

Fig. 1. The drag coefficienty of a sphere as a function of the Reynolds dv

number Re. BotlC, and Re are dimensionless numbers. Mind the logarith- o e m* ) —

mic scales. The sudden drop By at Re<2.5x10° (the so-called drag m dt (m=m )g 6w 7R (10

crisis) is associated with the change of the boundary layer on the sphere’s . . . .

surface from laminar to turbulent. Here m*g, with m* the mass of the displaced medium, is
the buoyant force. The above equation may also be written
as:

volumes of this journal, but in our opinion there are at least d, 67 7R

three good reasons for putting this subject on the stage once - —(1-m*/m)g— v (17

more.

First, we shall pay proper attention to the domains of va-or equivalently:
lidity of the linear and quadratic drag and discuss typical dv
examples of each. There is some need for this, since inthe — — _g— 4y, (12)
literature on this subject the physical problem often seems to  dt
be only an excuse for a nice mathematical exercise.
Second, we include the buoyant force, which is almos
always forgotten or ignored in the literature on this topic.  G=(1—m*/m)g=(1—p/ppa)9 (13
This is somewhat curious, since the medium that is respon-
sible for the drag force at the same time introduces a buoyarﬁ
force. 6myR 97
Third, by carrying out all calculations step by step we &= —=5p7 (14
hope to make them palatable for students, and perhaps bring bal
the subject to the classroom here and there. In textbook profi=quation (12) is readily integratedwith initial condition
lems on projectile motion the air resistance is habitually ig-»(0)=v,] to give the velocity:
nored, and this has led to a widespread belief that inclusion ~

%Nhere@ (the effective gravitational acceleratiois given by

nd, withm= %’ITRspba“ ,

of resistive forces would make any of these problems intrac-  ,(t)=(y,+G/a)e™ '~ 9_ (15)
table. The two cases to be considered provide welcome o
counterexamples. This looks quite different from the solution without drag

~ The paper is built up as follows. Linear drag is discusseotgiven by Eq.(6)] but in the limit for «—0 andg—g it

in Sec. Il, quadratic drag in Sec. Ill, and in Sec. IV we makepeyertheless reduces to it, as it should; this may be checked
some concluding remarks. Throughout the paper we shaEy a glance at the Taylor expansif®q. (52)] in the Appen-
often compare our results with those for the simple casgjiy. Equation(15) shows that the velocity during the down-

without any drag, an¢hence also without buoyancy. Let us - s N :
therefore briefly recall it here. In the absence of drag an%?r:gljeglglg{y.cannot grow beyoneg/a, the so-called ter

buoyancy a ball thrown up from ground level with initial

speedy, has velocity: g 2(ppai—p)9R?
Vierm— — — = 7 9 . (16)
v(t)=ro—gt, (6) « K
and its height is given by This also follows directly from Eq(12), whendwv/dt is set
B Lo equal to zero.
h(t)=wot— 201" (7) Integrating Eq.(15) yields the height(t):
It immediately follows that (vo+la) 9
, h(t)=J p(t)dt=— —— e @ Ztic,. (17)
0 o o
tup=tdgown="—"» 8
9 The integration constant; is determined from the initial
and that the ball reaches a height of conditionh(0)=0, and we get:
2 ~ ~
_Yo _ 920 ety 8
Niax= 29" 9 h(t)= 2 1+ 3 )(1 e at. (18

Furthermore, it is clear that the ball hits the ground withAgain, this solution reduces to its frictionless counterpart
exactly the same velocity, as with which it started. All this [Eq. (7)] in the limit «— 0 andg—g, as exemplified by the

539 Am. J. Phys., Vol. 67, No. 6, June 1999 P. Timmerman and J. P. van der Weele 539



Taylor expansiodEq. (53)] in the Appendix. forever, physically speaking until it reaches the surfaui¢h
Given the above expressions for the velocity and thea velocity that approaches the valu€j/a, which is now

height we now go on to determine the quantitigs, hmax. positive.

andty,,,. The main reason why we choose just these three In the same vein it can be checked that the way down

quantities is that they are easy to measure, and may thus lakes longer than the way up. This can be done, for instance,

checked in relatively simple experiments. The time to go upy insertingt=2t,,, in the expression foh(t):

is found by settingv(t) equal to zero and thus, from Eq. v avg avg) 1 avy
(15), h(2ty) = —|| 1+ —=|—| 1+ =] —2In| 1+ —
) . a g g g
1 avg vg\ avg a“ vy 3 4
tup=—|n(l+7):(r)——<r + — = —---. B VO_ , V0
a g s 2119 3 —a—3,gz a 75 e (23

(19
L Again, in performing the Taylor expansion, we have as-
The Taylor expansion is given to show hdyy approaches ¢ med that &vo/G)<1. The expression foh(2t,) then
its frictionless counterpart in the limita(o/g) 0. It con- yia|4s 4 positive value, so at timet,2 the ball is still on its
verges only for @vo/g)=<1, but that is all right, since for way down, or in other wordstye,t,,. The same result
finite values of vy /G) one naturally uses the exact expres-can also be inferred more genera beep Ref. 11and even

Sl . o _ . . without performing any calculatiott: during its motion the
The maximum height is obtained by substitutingin the  pall continuously gives up energy to the medium. So the
equation forh(t): kinetic energy, and hence the velocity, at any given height is
5 5 3 4 less on the way down than on the way (tpe potential
h _bo_ gln 14 @) _Yo_ ai_’_azﬁ_“_ energy being the samdt follows that also theaverageve-
max— ., g2 o] 29 35° 453 ’ locity on the way down is smaller than the average velocity

(20) on the way up, and consequently the descent takes longer
) ) than the ascent.
and the above remarks concerning the Taylor expansion also The argument can also be given in terms of forcedur-
apply here. Finally, the time to go down is determined bying the ascent the resistive force afedfective) gravity act in
setting h(t)=0. This yields the following transcendental the same downward direction while during the descent they

equation: are opposed to each other, resulting in a smaller net force. So
the acceleration is smaller during the descent, which there-
*Yo - fore takes more time
t=| 1+ —=|(1—e ), 21 L . .
@ ( >( ) @) Let us now consider the example mentioned in Sec. |, a

_ ) grain of sand slowly sinking to the bottom of a lake. In this
with two solutions,t=0 andt=ti=typt taown. Unfortu-  casep, . =2.67x 10° kg/m?, while for the mediumwater at

nately, the latter cannot be given explicitly, but the follow- ,om temperatude we have p=1.00x 10*kg/m® and 7
ing elegant relation derived by Lekr&is a worthy alterna- —1.00x 10 3kg/ms. The terminal velocity is calculated

tive: from Eq. (16):
_ vot | vy 22 Vienm= — 3.64< 10PR2  (in m/s). (24)
total g ' With this velocity the Reynolds number becomes
: . o . 2,R
One might object that it just transfers the painug, for R PRVierm_ 4 oo 10R?, (25

which we also have no explicit solution. We do know, how-
ever, that|v,| <vg (this follows simply from the fact that
the ball has given up energy to the resistive mediamnd
therefore thatt,,;,<2v¢/@. This may also be checked by
insertingt=2v,/g in the formula forh(t). Supposing that
at=2avy/§)<1, and using the Taylor expansion E§3),
this yieldsh(2v/§)= — - (2v8/3§3)+-~ , which is nega- _
tive, indicating that the ground must be hit before time
2v,/3. In the literature, where the buoyant force is habitu-
ally forgotten(and wherdj is therefore taken to be equal to

g) it is inferred in the same stroke thig},, is always smaller (26)

than the total time in the absence of dl’_ag_, i.e., smaller thal‘rhe terminal Ve|ocity’ 1.46 millimeters per Second, is at-

2vo/g (see, e.g., Ref. J0Of course, this is not generally tained almost instantaneously; aftérIn 100/(4.2< 10°)

true. If § is only slightly less tharg (i.e., if the buoyancy =1.1x1073s(1 ms, itis already approached within 1%. So

plays a minor rolg the total time as given by Eq22) will  we may safely say that the grain sinks all the way to the

indeed be smaller thani3/g, but in situations wher@  bottom with the terminal velocity. If the lakesi3 m deep,

deviates sufficiently fromg it will be larger. In the next this will take 34 min. In the absence of the buoyant force we

section, below Eq(44), we will come back to this. would have found 21 min, indicating once again that this
The value ofg may even be negative, for instance for anforce is not to be ignored.

air bubble in water, and in that case there is no descent. The Now, in order to illustrate the equations derived in this

bubble just keeps going upwardsathematically speaking section, we take this same grain of sand and toss it upwards

which means that only sufficiently small grains with radius
R<0.5X10 “m (that is, a diameter of one-tenth of a milli-
mete) will fall according to Stokes’ law (R€1). Take for
instance a grain of sand witR=0.2x10"*m which is re-
leased from rest. Its velocity is given by E@.5) with v,

v(t)=— %(1—e‘“t)= —1.46x 107 3(1— e 42<10°)
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h(t) tells us thatvy;= vo— gtieia, @and this coincides preciselgat
] t=tya) With the velocity of the frictionless case(t) =,
T o —gt. We further note that the dashed and dotted velocity
» curves go through zero with the same slgpamely —g),
' k but that the slope of the solid curve is different).

Ill. QUADRATIC DRAG

; . Whereas in the case of linear drag, the way up and the way
TN down constituted one problerfone differential equation
/ AN with one solution, in the case of quadratic drag they give rise
N to two separate problems. This is becaueloes not change
S PR sign in going from the way up to the way down; hence, to
0 0.001 ' 0002 M5 ensure that the quadratic drag force opposes the motion we
have to insert the correct signs ourselves. This means that we
get two different equations of motion, which have to be
treated separately. It should be noted that the mathematical
- :r’:g in:‘"’“’wy gist of this section has appeared earlier in this journal in the
,,,,,, no dirag , no buoyancy form of a problem"* the downward part alone has been de-
scribed in Refs. 15-17. The new thing is that we have in-
cluded the buoyant force. It does not make the calculations
any harder, so there is really no reason to avoid this force.
. 0001 0.002 During the upward journey the drag for¢given by Eq.

v(t)
in Mg

° S S —— — fs (5)] acts in the downward direction, and the equation of mo-
Tl . " tion takes the form:
l dVT * 2.2
mW:—(m—m )9—0.2pmRv7. (27
This equation can be rewritten as follows:

-0,011 d v

o= 9y, (29
Fig. 2. The heighh(t) and velocityv(t) of the grain of sand discussed in dt

the text, shot upwards in water with an initial velocity of 0.01 m/s. The solid Py .
curves are the “true” ones, including the effects of both drag and buoyancyVhere y= V0.2p wR?/mg=y/0.15(p/ pppey)/RG.  Integrating
(with a=4213 ' andg=6.14 m/). In the dashed curves the buoyancy is and inserting the initial conditiom(0)= v, yields:
neglected ¢=4213 s, §=g=9.81 m/2); in the dotted curves both buoy-
ancy and drag are neglectéice., =0 s * andg=g=9.81 m/$).

1
vi(t)= ;tar( — ygt+arctanyv). (29

From this expression immediately follows the time when the
from the bottom of the lakéa rather fancy experimenand  ball reaches its maximum heigfite., whenv,(t) becomes
determine its heighi(t) and velocity»(t). To keep Rezl  zerq:
we have to choose a small initial velocity; we seg 1 .
=0.01m/s. The result is depicted in Fig. 2. The dotted tup=—~arctanyv0=70— Vot Y
curves represent the simple case without drag or buoyancy; Y9 g 39 59
the dashed curves show the case when drag is taken inigere, as always, the Taylor expansion is meant to indicate
account, but buoyancy is néte., wheng is taken equal to  how the result approaches the frictionless expression. One
g=9.81m/$); finally, the solid curves are the “true” ones, should not use it foryvy>1, because then the series di-
including the effects of both drag and buoyangyith §  verges. Integrating the velocity gives the height of the rising
=6.14 m/9). ball:

The first thing to be noted is, of course, the extreme small-
ness of the times and distances involved, showing once again hy(t)= f v (t)dt
that the applicability of Stokes’ law is limited to microscopic
phenomena. For instance, the grain of sand rises only over 1 1
1.6x 10 ®m, less than one-tenth of its radius. Nevertheless, = —. —In[cog — ygt+arctanyvg)]+c,, (31
the figure brings out very clearly thdin the presence of Y 79
drag the way down takes longer than the way up, and alsgvhere the integration constacy is determined from the ini-
that the grain of sand very quickly approaches its terminalig| condition h;(0)=0:
velocity (—1.46x103m/s). Another interesting thing is 1 1
that the dashed velocity curve stops exactly at the point - IR
where it meets the dottei/d velocity. 1Phis is a gyraphical iﬁus- cz—ﬁln[cos{arctamvo)]— ﬁln 1+ (yvo)”.
tration of Eq.(22), since in the case th@it=g this equation (32

3 5
Vo 4 Vo

(30
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also significant. Its elegance stems from the relation bal_y
cos(arctam)=1/\/1+ o2. Its significance lies in the fact that p
it happens to be the maximum heidhy,.,, that is to say, ~ which for g=9.81 m/$ and p=1.293 kg/ni (air) reduces to

This integration constant is not only elegantly simple, but P
Vierm= — 6.67( )gR, (39

1 1 Vierm= — 8.1Y((ppa/1.293) 1)R. This shows, for instance,
Nian=—oe INV1+ (Y1) 2= IN[1+ (yvg)?] that if two balls are dropped simultaneously from the Lean-
Y| 2%%9 ing Tower of Pisa they will not hit the ground at the same
2 4 6 time unless they have equal values opy{/1.293)-1)R.
_N LM Wt 33y N this context the following passage from Galileo’s Dia-
29 Y 45 Y 64 : logues Concerning Two New Sciences, quoted in Ref. 15, is

o . very interesting: “Aristotle says that ‘an iron ball of one

Of course, the Taylor expansion is only valid fwo<1.  hundred pounds falling from a height of one hundred cubits
From the above equations it is seen thatt) is built up as  reaches the ground before a one-pound ball has fallen a

hmax PIUS @ negative term that decreases with time. Puttingingle cubit.’ | say that they arrive at the same time. You
the pieces together we get: find, on making the experiment, that the larger outstrips the
1 smaller by two finger-breadths, that is, when the larger has

_ . o reached the ground, the other is short of it by two finger-

(0 =Pmasct | Inf cod —ygt+arctanyo) ] breadths.” This passage shows two things. First, that Galileo
was well aware that the simultaneous landing for which he
B 1 \/72 - has become famous is in fact an idealization. Second, it
= %In[ 1+ (yvo)© cog — ygt+arctanyvy)]. shows that Galileo was a rather sloppy experimenter or had
very thick fingers, for the difference can be calculated to be

(34 no less than a meter; it is fair to note, though, that the ex-

When we get near the top of the trajectory, our analysis isperimental verification of this is not at all easy since the
strictly speaking, no longer valid; the Reynolds numberdifference in time is only 1/30 of a seco_ﬁ?jFor those th .
drops below 18 and the drag force is no longer quadratic in Want to check these numbers we mention that 100 cubits is
the speed. However, under normal circumstances this is su@pout 60 m and thato,=7.87x 10° kg/m®. _ .

a tiny part of the trajectory that we do not have to worry Resuming the calculation at hand and integrating the ve-
about it. In air, with p=1.293kg/m{ and %=17.1 locity given by Eq.(37), we get the height of the falling ball:

x 10" ®kg/(m9), the Reynolds number, given by E@®), is 1
Re= 151 2¢ 1°Ry. (35) hl(t)zf vl(t)dtzhmax—%ln coshyg(t—t,y. (40

For a pebble with radiuR=1 cm this means that should  The structure of this formula resembles thatho(t); it is
exceed 0.66 m/s for the quadratic drag to apply. In the fricyiit up ash,,,, minus a distance, which in this cage
tionless case this speed is already attained after 0.07 s, WheR.55eqnith time. Whereas the distance in the castt)
the pebble is 2'.2 ¢m under the top. In the presence of fr'Ct'OR}vas of the form In(cos), in the present case it has the form
these values will be of the same order of magnitude. h). Withh . 'E (33) N

We therefore ignore the subtleties around the top and turH](COS )- Withhpny as in Eq. we get.
directly to the downward part of the trajectory. Here the drag 1+ 2
force and the gravitational force act in opposite directions h (t)= ! In( 1+ (vo) )

41
and the equation of motion takes the form: 4D

'}/2@ COSh’}@(t - tup)
dy, _ 5 2 We have now completed the calculation of the velocity
at —9(1— ). (36) and the height as functions gfand in passing we have also
) ] ) ] ] determined the times of ascertt,{) and the maximal height
This eguanon.has andextra minus sign as compared with th ). Another quantity of interest is the time of descent
upward equation, and as a consequence we now get a ta : :
solution instead of a taffthis may be traced back to the dowr) - TO calculate this we sét,(t) equal to zero, that is,
difference between co$k—sinfPx=1 and coéx-+sir’x coshyGt gown= vV1+ (yvo)?, (42)

=1). To be specific, the solution reads: from which it follows that

1
S T(t— 1
vi(1) ytanhyg(t tup)- (37 tdownz%arccosh\/lJr(yvo)2
From this expression it is seen that the coefficigris not 1 1
just a cosmetic factor to keep the formulae transparent but = —_arcsinbyya=—In + 1+ (v
also has a physical meaning;(t) can never exceed the 9 Yvo 79 (7o (770)%)

terminal velocity 3 5
Yo Vo | 3%

— Y 3 S i S 43
Vterm:_E:_ i2 (39 9 769 74@3 “
0% 0.2p7R

Remarkably, this quantity which could not be solved analyti-
This terminal velocity can also be inferred directly from Eq. cally in the case of the allegedly simpler linear drag, here
(36), whendw | /dt is set equal to zero. Witln= 4R3pp, it comes out without any difficulty. Comparing the Taylor ex-
can be written as: pansions ot,, andtge,, (@assuming that they converge, i.e.,
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that yvo<1), one immediately sees th&f,,,>ty,. This is

just as in Sec. Il for linear drag, and indeed, the arguments

given there[below Eg. (23)] apply equally well to the
present case. In the literature, whgris always taken to be
equal tog, it is inferred from Eq.(43) that ty,,, can never
become larger than,/g (the time of descent in the absence
of dissipation and hence that the total tintg,+ tyouy, is al-
ways smaller than its frictionless counterpati,2g. How-
ever,

1
ttotaFE{arctanyvoJr In(yvo+ 1+ (yvo)z}

Y 29

2y 1103

+ .o
g 409

and this can very well exceed the valuey2g, if the buoy-
ancy is significant. Take for instance a light children’s ball
with radius 15 cm, such that the mass of the displaced air i

+ 94 (44)

m* =18.3g. Putting the ball on a letter balance one finds a

mass (h—m*) of 60 g, say, so the proper mass of the ball
(plastic plus air insideis m=78.3g. The corresponding
value ofg is 7.52 m/é, andy=0.176 s/m. If one throws this
ball upwards with a velocity of,=5.0 m/s the total time of
flight according to Eq(44) is 1.15 s(with t,,=0.55s and
tgown= 0.608), which is larger thani/g=1.02s. This is
illustrated in Fig. 3.

By insertingt 4o, in the expression for the downward ve-
locity, the speed with which the ball hits the ground is now
easily calculated:

1
- ;tanr(arcsinhyvo)

Vhit= Vi(ttotal) =

Vo

V1t (yvo)?

(45)

1.2 1

h(t)
inm .
T /// AN
g7 \\
0.8 ,"// \\
N
Vi \\
\
\
\
\
\
0.4 \
\
\
\
\
\
\
\ — t
0 0.4 0.8 12 @S

S — olrag & buoyancy

—-—= drag only
. no drag,no buoyancy

Fig. 3. The heighh(t) and velocityr(t) for the children’s ball discussed in

the text. The solid curves correspond to the actual ball, with air drag and
buoyancy(with y=0.176 s/m andj=7.52 m/g). In the dashed curves the
buoyancy is omittedi.e., we have takef§j=g=9.81m/¢ and hencey
=0.154 s/m), and the dotted curves represent the simple case without either

This is a surprisingly charming result, taking into account thedrag or buoyancy %=0 s/m andg=g=9.81 m/é). Note thatt for the
somewhat cumbersome expressions that went into it. On#®!id curve is larger than for the dotted one.

can immediately check that it has the right limiting behavior
for y=0: The final velocity is then equal te vy. Also the
limit for yvy—o is correct, sincevy; then approaches the
terminal velocity—1/y. In a practical situation, with a given
ball and mediumand thus a certain fixed value ¢, one
can come very close to this limit by making, as large as
possible.

In Fig. 3, the end of the dashed curve lies almost on th
dotted line, and from this one might get the impression tha
Eq. (22), which was derived for linear drag, is still validf.
our discussion of Fig. 2 However, with the above expres-
sion for v, one easily checks thag,, [Eq. (44)] is notthe
same as

3

5
Vo 43V0

2 >70 L.
78§+

vot|vhid 2w
T

g g
For the children’s ball the difference is small, singg€1 and
the value ofy, is modest, but in other instancésee, for
example, Fig. #the difference may be quite substantial. In

any case, Eq(22) is not exact for quadratic drag.
From Eq.(45) we can also infer how much of the ball's

(46)

1 Vg
B M (g
which is a factor ¥ (yv,)? smaller than the initial kinetic
energy. Thus fory=0 there is no loss of energy, as it should,
nd for any finite value ofy the energy loss increases with
growing initial velocity vg.

Let us see how all this works out for a spherical bullet shot
upwards with an initial velocityyy=150m/s. We take the
bullet to be made of leadp(.,=11.3x 10° kg/n°) and to
have a mass of 12 g, so that its radius is 0.63 cm. The value
of § is then 0.9998 (so the buoyant force is quite negligible
and the terminal speed1/y is, according to Eq(39),

Vierm= — 60.1 m/s(=—-216 km/h.

(47)

(48)

The associated value afyg is 2.5 and hence, according to

Eq. (45), the bullet hits the ground with almost the terminal

velocity, namely with 55.7 m/s. And with&(yv,)2=7.25

it follows that no less than 86.2% of the initial energy is lost

energy has been dissipated during the flight. At the momenb the air. Also the other characteristic quantities are greatly

it hits the ground its kinetic energy is
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1200 spherical bullet above. Note that in our example we took
h(t) L vo=150m/s instead of 700 m/6n order to keep Re2
in m X10° and stay within the domain of quadratic dyalgut,
T although it brings about large changes in the height and time
of flight, this has no effect on the terminal velocity.
8oo Now one might object that bullets are usually not spherical
: but torpedo shaped, and that the value of fbf the latter is
somewhat larger since its drag coefficient is only abOyt
=0.30(against 0.4 for a sphereBut this is not sufficient to
400 bridge the gap, since for a torpedo-shaped bullet of 12 g one
would get 1/#~90 m/s and this is still much smaller than the
speed of sound. Moreover, the torpedo shape prevents the
bullet from falling straight(rather, it comesumblingdown)
. and this means that its translational velocity will always re-
, , , >t main significantly smaller than 4/ in no way does it get
Y 10 20 30 "° near the speeds reported in the newspapers.
As a final example, let us have one more look at the chil-
150 dren’s ball mentioned under E@44). We drop it from a
v(t) — drag heighthy=30m, and assume that it falls straight dovig-
imms |\ e no drag noring the fact that in reality the ball will always start to
T . (buoyancy negligible) wobble as a consequence of the formation of vonnka
vortices. Disregarding the very short initial stage for which
50 v<0.044m/s, when the Reynolds number has not yet
ot reached the value £Qcf. Eq. (35)], its velocity is given by
o K 20 30 ins Eq (37) with tup=0 S:
-50 v (t)y=— %tanhy‘g’tz —b5.67tanli1.32). (49
~100 The terminal velocity of 5.67 m/s is approached within 1%
N after 2.0 s. The altitude of the ball is then
-150 e

1

_ _ _ _ _ h,(t)=ho— —=Incoshygt=30—4.28 In cosh1.32)

Fig. 4. The heighh(t) and velocityr(t) for the spherical bullet discussed Y9

in the text. The solid curves are for the actual bullet0.0167 s/m), while

the dotted curves represent the case without air dyegQ s/m). The buoy- =216 m. (50

ant force is negligible in this example, §o-g=9.81 m/s. The rest of the way down takes 21.6/5:63.8 s, so the ball
reaches the ground after 5.8 s. If the experiment were per-
formed in a vacuum tube, i.e., in the absence of drag and

would reach a height of 1.15 kiisee Eq.(9)], it now does buoyancy, one would find=y2hy/g=2.5s.

not go higher than 0.36 km. As for the time of flight: instead It may be noted that the time of descent also follows from

of 2X15.3s=30.6 s without air resistance, we now dgt  Eq.(43), if we assuméfor the sake of the argumerthat the

=7.3s andgy,=10.1s, adding up to a mere 17.4 s. Theseheight of 30 m was acquired as a result of a tremendous

values can also be read off from Fig. 4, where we havéhrow. We then first determine the associated value,dby

depictedh(t) and »(t) for the bullet as functions of The  setting ho=hpa, i.e., 30=4.28In/1+ (v,/5.67¢. This

dotted curves represent the case without air drag. yields a valuevy=6245 m/s(!) and inserting this in Eq43)

The above example is related to a question that came uge getty,,,=5.8 s again.

during the recent disturbances in Albania, where the people

made it a habit to crowd together and shoot bullets straight

up into the air. Reporters in the field were somewhat coniV. CONCLUDING REMARKS

cerned about this. The issue was discussed on television and

in several newspapers, and in particular the speed with which W€ have now come to the end of the paper and a few

the bullets would hit the groundor an unfortunate by- concluding remarks are in order. First, we have restricted

standey was a hot topic. The bullets considered were 10—15Purselves to resistive forces which depend either linearly or

g, and fired by a Kalashnikov rifle, which means that thequadratlpally on the velocity. These cases correspond, as dis-

initial velocity was about 700 mi/s. In one newspaper thecussed in Sec. I, to Rel and 16<Re<2X10, respec-

bullets were estimated to return to the earth with the speed dfvely. Outside these intervals our calculations do not apply

sound(330 m/3, another newspaper reported that the bullete2nd one should turn to a computéiSome of the qualitative

came down with the same speed as with which they left th&€onclusions of the present paper, however, remain valid also

rifle (700 m/3, and a third one claimed that the impact ve- in the general case. For instance, the way dawaystakes

locity was no less than a smashing 120 000 m/s. The lattdenger than the way upt §own>typ) -

two values are clearly false, illustrating how poor our intu- Second, we have included the buoyant force, which means

ition for air resistance really is, but even the first one isthat we deal with an effective gravitational acceleratpn

considerably faster than the terminal velodi®® m/9 of our  rather than withg itself. We have restricted ourselves to
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cases wherg remains positive; ifj were made negativeas  derived from the exact analytical solutions in the main text

for a helium-filled balloohthe ball would go up all right, but and elucidate the behavior for small drag. In the limit

never come down. In the literature the buoyant force is com-—0 (for linear drag andy?— 0 (for quadratic dragonly the

monly disregardedwhich means that one always deals with first term is retained and this term is equal to the frictionless

g instead ofg), and in that case one can show that for all quantities given by Eqg6) and(7). In taking these limitsg

resistive force$ (v)o " with n=1 the total time of flightis  is simultaneously replaced ky, since the absence of drag

smaller than the frictionless timerg/g.° We have seen that also implies absence of buoyancy.

in reality the matter is more subtle and that the total time of In the case of linear drag the exact expression for the

flight can very well exceed 2/g. velocity is given by Eq(15). Its Taylor expansion reads:
Third, we have restricted ourselves to purely vertical tra- - . 21,2 1

jectories. In practice, of course, a slight horizontal compo-”(t)_(Vo_gt)_at(”o_ 200 + a3 t(vo— 39—+,

nent can hardly be ruled out, but this will not have a great (52)

influence on quantities like the maximum height and the final, hich for w—0 andg— g indeed reduces to the frictionless

velocity. In the case of linear drag the now two-dimensiona ; : ; ; ;
problem still admits an analytical solution. One simply takesl;/ee)i?cgs[%ﬂ'e(?gﬂ'omﬁghg;%ghgil(\)/ﬁ.n by E418) in the main

the solution for the horizontal component of the motion,
(1) = vy, (519 h(t) = (vot— 3Gt%) — a3t(voet — 5Gt°)

21:2 1=:2

X(t): @(1_670&) (51b) ta 6 (VOt 4gt ) (53)
“« and, again, in the limiw—0 and@§—g this reduces to its
and superimposes this on the solution for the vertical comfrictionless counterpaiteq. (7)] as it should.
ponent, given by EqY15) and(18). The result is a curved  Likewise, in the case of quadratic drag we get for the way
path which in the limit fora—0 (and§—g, as far as the up:
vertical component is concernetends to the well-known _ e 2 e 1m2u2
textbook parabola. The quadratic drag is a harder nut to (1) =(vo—Gt) =y Gt(vo— w0t + 39t ) +---, (54
crack, even though the equation of motion in the horizontal e > 1mi o 2 e on
direction can again be solved analytically; the difficulty is  h;(t) = (vot—20t) — y* 150t (6v5— 4voGt +Gt) +- -
that this time a linear superposition is not allowed, since the (55)
system is nonlinear. How the problem should be handled i .
this case is described in Refs. 19-21. ‘and for the way down:

In the context of nonvertical trajectories, there has recently (T — ~2(2,,3 22 =202 1=3.3
been a lively discussion in this journéRefs. 22—24% about v (O =(ro= G0 = ¥ (50— viGt+ 10t~ 557
the optimum angle of projection, i.e., the angle under which +--
one should launch a ball in order to achieve the greatest
range. In vacuum this angle is 45°, and it is also well known
that in the presence of air drag it is somewhat less than 45°.
That is, optimal shots in air are “low.” The same is true in 3.3 —ded
the case of linear drag, and indeed, one might be tempted to —4ve@ P+t e (57)
think that it holds for any conceivable drag forég(v)
o ", but this isnotthe case. In Ref. 23 it was shown that if dAuthor to whom all correspondence should be addressed.

. 1See, for instance, L. D. Landau and E. M. Lifshituid Mechanics(Ox-
the exponenh exceeds some critical valyaround 3.5, de- ford U.P., New York, 1058

pending on the drag coefficigrthe optimum angle can very 2C. Pozridikis, Introduction to Theoretical and Computational Fluid Dy-

well be a few degrees larger than 45°. It is fascinating to seenamics(Oxford U.P., New York, 1997 p. 311.

that such a venerable topic can still have surprises in store.*R. W. Fox and A. T. McDonaldntroduction to Fluid MechanicgWiley,
The fourth and final remark is that we have treated the New York, 1992, 4th ed., p. 461. _

gravitational acceleration and the density of the medium asF: M- White, Viscous Fluid Flow(McGraw—Hill, New York, 1974, pp.

constants. For the situations described in the present pap%ﬁof__glroaen F. D. Murnaghan, and H. BatematydrodynamicsDover

fchis is certai_nly a.good approximatior_1 bl_Jt it rules out, for o Yo):k, 15561 bp. 316?317.’ ' arody '

instance, trajectories that reach very high into the atmospherey. van Dyke,Perturbation Methods in Fluid Mechani¢academic, New

or even escape into spateAn interesting account of a fall  York, 1964, p. 149.

: (56)

1
hy(t)=(vot— 3Gt%) — yzﬁ(zyg—svggwevg"gztz

from high altitude can be found in Ref. 26. F. S. ShermarViscous FlomMcGraw—Hill, New York, 1990, pp. 288—
295.
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TOE

| suggest that contemporary physicists’ obsession with a theory of everything is socially irre-
sponsible. In expecting society to provide billions of dollars to support this quest, TOE physijcists
have become like a decadent priesthood, demanding that the populace build them evef more
elaborate cathedrals, with spires reaching ever higher into their idea of heaven. Since a theory of
everything would be not only utterly irrelevant to daily human life and concerns, but also incom-
prehensible to the vast majority of people, TOE physicists can be likened to the late megdieval
Scholastics. This is the twentieth-century equivalent of asking how many angels could dance on
the head of a pin.
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