
Keeping tagged versions of code and

parameters by GIT

Håkan T. Johansson
f96hajo@chalmers.se

Ronja Thies
ronja.thies@chalmers.se

5th March 2014

Contents

1 Introduction 1

1.1 Meritocracy — building trust 2
1.2 Plain vanilla . 2
1.3 GIT in three paragraphs . 2

2 Workflow 4

2.1 Tutorial by example . 4
2.1.1 Hacking away . 4
2.1.2 Bare repository . 5

3 Archive 6

3.1 Central memory . 6
3.2 Tag archive . 7

4 Tagged results 8

4.1 Tagged ROOT-files . 8
4.2 Tagged figures . 9

5 Guidance to the tag archive, by example 10

6 GIT cheat-sheet 11

1 Introduction

GIT1 is a distributed version control system (VCS). Distributed means that
there is no (central) repository, i.e. none which by design is more important,
general or valid than any other.

1http://git-scm.com/

1

http://git-scm.com/

1.1 Meritocracy — building trust

In a distributed model, a preferred repository, i.e. one which is used as
upstream by users, can not be enforced by technical means. Repositories
become preferred sources by “natural selection”, in this case by building
trust.

Simple example: A repository A maintained by user A only become
used by others if they feel that the code or parameters in that repository
is good and useful to them. They then base their work on A. This does
not mean that A must produce all (or even any) code or parameters, just
that A is showing good judgement in which commits A pull from other
users and place in A. It may happen that eventuallyA spends less effort on
maintaining the tree A. Then e.g. the tree D (which inherits from A) of user
D could become the de-facto standard synchronisation source.

1.2 Plain vanilla

We believe that a plain GIT workflow is advantageous in the setting of Nuc-
lear Physics experiment computing. We also think that the GIT tools (in-
cluding other third-party helper utilities) are best used as they are, and not
wrapped in any custom fashion by the collaboration23.

1.3 GIT in three paragraphs

Each version of a file in a git repository is stored as a “blob”, which is the
content and an unique identifer of that content (an SHA1 hash). A direct-
ory of files is a list of names and file contents, the latter described by their
unique identifiers. An entire directory tree is stored in the same fashion, re-
cursively, i.e. with each subdirectory as an entry in the parent directory. A
commit is a particular version of a directory tree, by reference. Each commit
also has references to the predecessor commit(s)4 and a commit message.
Many commits together make the development graph. Each of these items
above is a GIT object, identified by its SHA1 hash, see Figure 1.

GIT is a collection of tools to manipulate such repositories. A command
has the general form git command args.... In addition to the examples
in this document, there are many resources on the web, and likely manual
pages in your UNIX computer: man git.

Each GIT working directory has the full commit history in a subdirect-
ory .git. With the GIT tools, one commit changes from the working tree
to the repository. And move the working directory “around” in the project

2Simplifying software installation as GIT+utilities come with any sane OS distribution.
3Not precluding contributions to the GIT or utility projects!
4Plural for merges.

2

dir

Second commit. Renaming files.

dir

radon radon

iron

lead

tin

radon

tin

lead

iron

dir

gold

zink

tin

First commit.

Text C II.Text C II.

Text A.

Text B.

Text B.

Text C.

Text B.

Text B.

Text A.

Text B.

Text A.

Text B.

3423e56d...

fdd279d9...

6eaf7451...

9687279d...

b20fc2d0...

4cdbe8a9...

4df201be...

89126dbc...

a34e9ca7...

0b52245b...

7fdea95d...HEAD, master

1a2924b9...

Text A.

Text C.

Text B.

Text C II.

tree 7fdea95d...
parent 4cdbe8a9...
author Bob <bob@u.v> 3121
committer Bob <bob@u.v> 3121

Renaming files.

tree 0b52245b...
parent 1a2924b9...
author Alice <al@x.y> 3027

Second commit.

committer Alice <al@x.y> 3027

blob 9687279d... radon
blob 6eaf7451... tin

blob fdd279d9... radon
blob 6eaf7451... tin

tree 89126dbc... dir
blob 3423e56d... iron
blob 6eaf7451... lead

tree 4df201be... dir
blob 3423e56d... iron
blob 6eaf7451... lead

tree 4df201be... dir
blob 6eaf7451... gold
blob 3423e56d... zink

tree a34e9ca7...
author Alice <al@x.y> 2996
committer Alice <al@x.y> 2996

First commit.

Figure 1: The upper part shows three versions of a small project with four
files, two in a subdirectory. The second commit changes the contents of a
file, and the third renames two files. The lower part shows the objects of
a GIT repository representing the above revision history, evolving from the
bottom up in the picture. Everything is an object: content + SHA1 hash.
(The hashes have been abbreviated for clarity.)

3

history by checking different commits out. Commit chains or entire repos-
itories can be fetched or cloned from other GIT directories (repositories). A
GIT repository can also be set up as “bare”, in which case it has no working
set of files. They are suitable as points for code distribution.

2 Workflow

2.1 Tutorial by example

The workflow is described as working examples below. (The test-proj
sandbox does exist — please try by executing the commands!)

Some preliminaries:

0. Getting the name right in commits is nice (change to yours):

git config --global user.name "Alice"

git config --global user.email "alice@xyz.org"

Colourised output!

git config --global color.ui true

But do not mark whitespace at end of lines like severe errors:

git config --global color.diff.whitespace "blue ul"

2.1.1 Hacking away

1. Check out a project directory from any (normal) upstream repository:

git clone land@lx-pool.gsi.de:/u/landcvs/test-proj.git

This creates aworking directory test-proj,with the current master
branch of the source repository. The entire history of the project is
placed in the subdirectory test-proj/.git.

cd test-proj

2. View the history of the project5:

git log --all --oneline --decorate --color

3. Then, hack it a bit (e.g. modify a comment):

emacs hello.sh

4. One should commit early and often. But first (compile and) test the
new version:

./hello.sh

5It is suggested to run this command in a separate terminal window, to easily see the
output (not having to remember it) when doing more complex GIT manipulations.

4

5. One should commit early and often. But before etching the changes
in history, inspect them6!

git diff

Depending on the kind of changes, the option --word-diffmay be
a useful companion as it reduces the change-marks from lines to the
changed words. 7

6. Commits are created from the staging area (also known as the “in-
dex”). Add a modified file to the index:

git add hello.sh

After being staged, themodifications are no longer seen by git diff.
The staged differences can be viewed by git diff --cached.

7. Perform the commit!

git commit

An editor8 will open for entering a commit message. Shortly describe
what has been changed.

2.1.2 Bare repository

Bare repositories (without a working set of files) are useful both as distri-
bution points and for synchronisation when working at different systems.
They by convention have .git as extension on the directory name.

• Create a bare repository.

cd ..

mkdir test-proj.git

cd test-proj.git

git init --bare

It can be populated either by pulling from somewhere, or by pushing.
By pushing branch master from repository test-proj (bare is the
local name (handle) for the bare repository):

cd ../test-proj

git remote add bare ../test-proj.git

git push bare master

6Also this benefits from running in a separate terminal, while performing the next step.
7If you see entire files mysteriously changed, did something change the formatting?

Newline changes on Windows?
8In case disaster strikes and an unusable editor (like VI) appears, prepend the command

by e.g. GIT_EDITOR=nano. Emergency instructions: type :q to evacuate VI.

5

• The circle is now complete by you or someone else cloning from your
new (public?) repository:

git clone url-path-to-.../test-proj.git

• One can also fetch a branch into an existing repository.

git remote add friend1 url-path-to-.../test-proj.git

git fetch friend1 master:test1

git checkout test1

friend1 is the local handle for the remote repository, master the
name of the branch to be fetched and test1 the name the branch
will have locally. The checkout changes the working directory to be
at branch test1 for testing.

• Once satisfied that test1 is a good development, it can be merged
with your active branch, e.g. master:

git checkout master

git merge test1

It is suggested to keep bare repositories such that only one user can
write to each. That way it is clear who has introduced (pulled) the con-
tained commits.

3 Archive

There is one caveat: archiving (of abandoned branches).

3.1 Central memory

For a collaboration, it is necessary to be able to reproduce results and plots
long after production. This includes intermediate results, that may have
come from code or parameter sets that were subsequently found bad and
have been abandoned. This can potentially become quite a head-ache when
a distributed VCS is used, as dead-end trees are abandonded even by their
own creators. Some sort of central memory is needed.

“You Will be Assimilated. Resistance is Futile.”

The Borg, Star Trek.

This document describes a way to keep an archive of such (possibly) his-
torical code and parameter sets. Handled, of course, in a GIT repository —
see Figure 2. Note that such an archive repository does not imply endorse-
ment of any contained code or parameters. It exists just as an convenience
to keep the sources and parameters used to produce plots and results that
have been shown more or less officially.

6

Commit

Development branch

Tagged commit

Pulled branch

Figure 2: To the left: five repositories with common ancestry, with devel-
opment influences from each other. To the right: an “archive” repository
with tags from the left repositories. Only commits leading up to the tagged
versions become part of the archive.

3.2 Tag archive

The tag archive is realised as a bare repository stored as

/u/landcvs/gittags/projectname.git

The reason for keeping it under the landcvs user is to limit the number of
users that can write directly to it. In fact, no user should ever write to it as
it is updated by a script9.

The reason the archive is updated by a script is that it can be quite a
challenge to get specific commits into a repository, without making mis-
takes. Commits to be archived are therefore first pushed to a bare staging
archive, on the land user account:

/u/land/gitstage/projectname.git

9To avoid mistakes also by those having access to the landcvs account, it is forbidden
to clone or fetch a tag archive using landcvs as username in the URL. Note that this is not
enforced by technical means — users with access need to exercise their skills. Besides, one
would rarely clone from this repository.

7

If this repository is somehow destroyed or scrambled, it can easily be recre-
ated without any ill effects on the archive repository.

Since the archive is not a development tree, it contains no branches. It
is very likely to become a rather “bushy” tree (graph) of commit heritage
lines as its sole purpose is to store snapshots of code and parameters that
were used at various stages, and possibly abandoned later.

To easily move the commits around, tags are used as handles, but are
themselves not important. To put a commit into the archive, first tag it and
push the tag to the staging archive. Then tell the fetcher script (which runs
as landcvs in a CRON job), to fetch that tag. This is done by (as land)
calling:

landaddgittag projectname name-date Name

where projectname is the project (e.g. land02 or s393), name-date a
tag as one word and Name your name (for the benefit of the script logfile).

4 Tagged results

As a GIT commit represents a snapshot of the tracked directory tree, one
SHA1 hash reference to the current commit is enough to precisely describe
the state of code or parameters. The SHA1 can be retrieved at any time by:

git describe --dirty --always --tags --long

and may look like “htj-20131031-0-g42178d7”.10 This is on the form
[TAG-N-g]SHA1[-dirty]11, where TAG is the most recent tag, N steps
away from the current commit SHA1. The mark -dirty appears if the
working directory has uncommitted changes12.

The idea is now very simple: by attaching the SHA1 of both the used
analysis code and parameters13 to results presented, they can be traced
back and reproduced.

4.1 Tagged ROOT-files

To allow tracability, the intermediate analysis resultsmust bemarked. Since
our analysis process has a clear information flow from sources to destina-
tion of the form:

raw data + analysis code + calib.parameters → intermediate, (1)

10The GIT installtion at GSI is ancient and does not support the --dirty option. LAND02
knows how to work around this.

11Note the -g, which is not part of the SHA1.
12In which case the entire identifier is of limited use.
13In the future also auxillary scripts used to generate plots etc. should be tagged. But let

us do one step at a time.

8

where intermediate is a ROOT-file, and

intermediate → results = figures & values, (2)

one important ingredient is to mark our ROOT-files.
LAND02-generated output depends on:

• The source code.

• The calibration parameters.

• The command line.

The two first can be uniquely identified by embedding the git-describe
identifiers of the source and parameter directories, at compile and run-
time, respectively14, into the ROOT-file. The command line can be embed-
ded as is15 (this is not implemented yet).

ROOT-files produced by Ralf’s TRACKER should pass these identifiers
along, and in addition obtain similar identifiers describing the source and
parameters used for particle tracking. (Not implemented yet.)

4.2 Tagged figures

Histograms produced from trees in marked ROOT-files can be annotated
by using a small script: tagplot.C. This places a small identifying text
in the lower left corner of the current figure, see example in Figure 3. (De-
fault here, optional there. . .) It can also generate a pure text output, suit-
able for mail or other media (e.g. marking a full presentation instead of
every picture). Usage when standing in a LAND02 experiment directory
(land02/Sxxx):

.L ../scripts/tagplot.C++
h509->Draw("Inz:Inaoverz")
tagplot()

Finally, even publications might be marked at the end, just like the arcane
funding agency contract numbers: “These results were obtained using ana-
lysis software with version-tag c0ffee.” Which then references a script or
other description, that in turn has the code and parameter references in-
cluded.

14Due to some parameters actually being compiled into LAND02 instead of being parsed
at run-time, they need to be identified also at compile time, but this is a minor historical
technical issue (handled by the tools).

15Which just shifts the interpretation work to the next level, but at least maintains trace-
ability.

9

Figure 3: Figure with SHA1 hash tags in the lower left corner.

5 Guidance to the tag archive, by example

Theworkflow including interactionwith the archive repository is described
as aworking example below. (The test-proj sandbox does exist—please
try by executing the commands! For production use, test-projwould be
e.g. land02, s393 or some other collaboration GIT project name16.)

1. Check out a project directory from any (normal) upstream repository:

git clone \
land@lx-pool.gsi.de:/u/landcvs/test-proj.git

cd test-proj

git log --all --oneline --decorate --color

2. Then, hack it a bit (e.g. modify a comment):

emacs hello.sh

3. Check, stage and commit the changes in your repository:

git diff

git add hello.sh

git commit (Enter a correlated message.)

4. This commit is an important mile-stone in development — tag it!
(E.g. on the form name-date[-feature].)

git tag smith-19830123

16Contact f96hajo@chalmers.se if your favourite project does not have an archive
yet.

10

5. The tagged commit has been used to produce some results or plots
shown somewhat “officially”. Collaborative behaviour requires:

Push it to the staging area for the archive (on the land account):

git remote add stagetags \
land@lx-pool.gsi.de:/u/land/gitstage/test-proj.git

git push stagetags smith-19830123

6. Tell the automatic fetch-script to do its work (giving the tag, and your
name for the script log files)!

ssh land@lx-pool.gsi.de

landaddgittag test-proj smith-19830123 Smith

7. Check that the tag was accepted into the archive:

tail -f /u/landcvs/gittags/addtagslog.txt

Some other useful operations:

• The following will create a complete copy of one project repository
in the central tag-keeping archive. (Effectively a backup, if one so
wants.) (It will complain a bit, since there is no HEAD set (which is
how the archive is — it is not a development tree):

git clone \
land@lx-pool.gsi.de:/u/landcvs/gittags/test-proj.git

cd test-proj

git log --all --oneline --decorate --color

• Fetching single tags is also possible (create empty repository, add re-
mote, fetch):

mkdir test-proj

cd test-proj

git init

git remote add archive \
land@lx-pool.gsi.de:/u/landcvs/gittags/test-proj.git

git fetch --no-tags archive \
refs/tags/smith-19830123:refs/tags/smith-19830123

6 GIT cheat-sheet

A list of useful GIT commands.

11

• to list all branches (active is marked with *):

git branch

• to change the working tree to a certain branch:

git checkout <branch>

• to add a remote repository to fetch from or push to:

git remote add <remotename> <url>

• to push a certain branch (to a remote repository):

git push <remotename> <branchtopush>:<branchnameonremote>

• to push a certain commit (to a remote repository):

git push <remotename> <commithash>

• to tag a certain commit:

git tag <tagname> <commithash>

• to push a certain tag (to a remote repository):

git push <remotename> <tagname>

• to initialize a GIT repository:

git init

• to initialize a bare (i.e. no working files) GIT repository:

git init --bare

• to pull a certain tag:

git pull <remotename> <tagname>

• to see the commits in a nice and colored way:

git log --all --decorate --graph --oneline --color

• to add a file to the index (staging area for next commit):

git add <filename>

• to make a commit:

git commit

12

	Introduction
	Meritocracy — building trust
	Plain vanilla
	git in three paragraphs

	Workflow
	Tutorial by example
	Hacking away
	Bare repository

	Archive
	Central memory
	Tag archive

	Tagged results
	Tagged root-files
	Tagged figures

	Guidance to the tag archive, by example
	git cheat-sheet

