text files vs. SQL databases

for

running and analysing experiments

Haékan T. Johansson
fo6hajo@chalmers.se

9th November 2013

Contents

1 Introduction

At seemingly regular intervals, the discus-
sion about how calibration parameters and
other meta-data used in experiment analysis
should be stored and handled comes up. As
the “database vs. text-file” dispute. By cach-
ing the arguments of both camps, this docu-
ment aims at bringing any further such dis-
cussions to a next level, by avoiding the tedi-
ous rehashing of basic arguments.

We first describe the kinds of information
(data) that is handled when preparing, per-
forming and analysing nuclear physics ex-
periments. Then follows a short overview
of the two approaches, to have a baseline of
terms. Thus armed, we continue by enumer-
ating a number of desired features and com-
mon tasks from the point of view of a user
(and developer). Then the arguments of the
two approaches are presented.



Anticipating the conclusions, the reader
should be cautioned: While this document
strives to be fair, it is not intended to be un-
biased. For the task at hand, the author(s)
does not refuse to use SQL databases out of
being cheap, lazy or ..., but because a bet-
ter solution exists, both with respect to format
and tools: plain text files. This document ar-
gues why.

Figure 1: Connections between the different
kinds of data / information involved in nuc-
lear physics experiments, illustrated as 3d-
boxes, with vertical stacking marking mul-
tiple versions during analysis. Processes are
shown as ellipses, and the actual setup as a
round-corner box.

2 Types of data

Quite a few kinds of information are used
and generated in experimental (nuclear)
physics, see Figure[ll They are characterised
in this Section. The first few will not be dis-
cussed further, but are included for complete-
ness, and as they introduce some useful tools.

2.1 Raw data (events; list-mode)

The raw digitised data collected by the data
acquisition system (DAQ) during an experi-
ment is the essential outcome of a beam-time.
It is generally stored in a streaming fashion

in raw binary files. The reason for this is two-
fold:

1. Keeping the DAQ simple! The binary
data stored is most often copied un-

altered, directly from the data acquisi-
tion modules (DAMs).

2. The sheer size of the data. Unsurpris-
ingly, experiments tend to generate data
with amounts on the order of, or well
exceeding, the size of single units of
state-of-the-art current capacious storage
medialll Either it was tapes in the last
century or early in the current, or hard
drives today.

We do not believe that this storage scheme
is under discussion or challenged. We how-
ever note that sometimes suggestions to use
the storage format of processed data (more
explicitly: ROOT-files; see next section) are
put forward. It is advised that such ideas
are in stark contradiction with point 1 above
— it includes unnecessary complexity in the
DAQ. A faulty DAQ can render the collec-
ted (then also mangled) data of an experi-

!There are of course exponential variations in both
directions: data sizes swelling even further challenging
or into the more managable realms.



ment useless. For further brain-unwashing,
see Section 5.2.2 in [1].

It should also be noted that raw data, once
collected, never changes. Altering them once
written on file would open a door to scientific
misconduct.

2.2 Processed data (events)

Unpacked and partially treated raw data is
today generally stored in so called trees in
.root -files, in-between processing by pro-
grams using the ROOT framework [2].

The .root -files are effectively a kind of
database. A custom one, designed to effi-
ciently be able to handle the vast amounts of
data streaming through analysis, organised
by column-wise variables. The events are
rows in this thought matrix. This scheme is
also undisputed — if, then possibly by other
equivalent tools and frameworks; a decade
ago, it could have been hbook files for use
with the ROOT ancestor CERNLIB/PAW [3].

2.3 Source code

The source of the programs used during
all stages of an experiment is professionally
kept in version control systems (VCS), e.g.
GIT or CVS, and handled using each user-
/developer’s favourite editor(s). This world-
wide common practice is only mentioned
here as it introduces an extremely well-tested
category of software: version control sys-
tems. While also capable of keeping track of
binary blobs of data, they excel at handling
the history of line-oriented text files. Shep-
herding of source code also implies acquaint-
ance with the likewise standard armoury of
UNIX text tools: LESS, GREP, DIFF, SED/AWK,
PERL/PYTHON, ... As well as an understand-
ing of the underlying VCS.

We also consider shell scripts, ROOT mac-
ros, and other small pieces of code as a part

of the heading “source code”.

2.4 System topology / DAQ setup

The description of the setup is a vital com-
ponent during an experiment. Mapping in-
formation is needed by the control system
(slow control) to operate detectors and other
equipment. Some parts of the configuration
are used by the DAQ to read the correct mod-
ules, producing the raw data files. The more
detailed information is needed by on- and
off-line analysis to map the detector channels
when unpacking the raw data before/during
analysis.

The actual information used by the DAQ
needs to be retained, but will not change
after use (the beam-time). The detailed map-
ping information in principle also does not
change, but may have to be modified if
one during analysis discovers that the in-
formation entered was incorrect (mismatch
between map and reality at the time of exper-
iment).

2.5 Slow-control settings

Run-time adjustable parameters of the setup
are handled by the “slow control”. This can
be high voltages, magnetic fields, slit posi-
tions, gas flows, etc. Some setup paramet-
ers may be assigned (optimised) iteratively
by analysing data during the setup-phase of
the experiment, to e.g. gain match elements
of segmented detectors. Control parameters
are often adjusted by the user during experi-
ment setup, but preferably kept constant dur-
ing production runs.

2.6 Slow-control logs

The actions taken by the slow-control system
need to be logged, both for run-time debug-
ging and later analysis. It is also, for the same



purposes, useful to have recordings of vari-
ous (slowly) varying parameters of the setup.
The number (storage size) of such paramet-
ers can easily be more than the amount of
event-wise recorded data is, thus also for that
reason recorded more seldomly.

2.7 Calibration parameters

The processing of raw data to obtain higher
level quantities is called reconstruction. The
calculations and conversions involved use
several layers of parameters going from one
step to the next. Determining the parameters
is called calibration, and can often be seen as
a sort of inverse reconstructiorﬁ, dead-ending
at the level where the particular sought-after
parameters are used.

These two steps are a major part of the
analysis work, and the handling of calibra-
tion parameters is the core subject of this doc-
ument. It certainly is the kind of “meta-
data” most people come into direct contact
with. Depending on counting fashion, there
are three or four dimensions to these para-
meters (see Figure2):

e Parameter type and index:

— The type of a parameter depends
on the quantity it describes. Some
parameters are scalars, while other
might logically be vectors, e.g. de-
scribing a spline curve correction.
Other still may come in pairs,
e.g. correlated offsets and slopes.
Yet another might choose from a
set of distinct options: method1,
method2 , method3a , none...
Note how the different layouts
bring heterogeneity to how various
parameters are best viewed, stored
and handled.

’Inverse, as the same equations are used, but other
variables are solved for.

tAnalysis

iDet

Figure 2: Dimensions of calibration para-
meter storage. The horizontal line, tgyyt, rep-
resents time during the experiment and out of
the paper comes detector channels, ipe;. The
vertical layers, fanalysis, pile up as analysis
progresses by refining parameters (shown ex-
ploded). (Concept from D. Bertini.)

— The index (usually including a de-
tector name) tells with which partic-
ular detector channel a parameter is
associated. This dimension grows
as the segmentation of detectors in-
crease.

e Time during experiment. Due to wanted
and unwanted changes, the calibration
parameters may vary during the ex-
periment.  Drifts due to temperature
changes, varying leakage currents and
other gradual damage may force the
physicist to use several sets of paramet-
ers, especially for the high-resolution fi-
nal analysis of an experiment.

The ranges in time where a set of para-
meters is valid is however not common
for the entire setup — different parts
of the setup change differently. Mean-
ing that a “separation of controlling vari-



ables” between this and the previous
indexing dimension(s) cannot be per-
formed.

e Time during analysis. As analysis work
progresses, as the setup is better under-
stood, the calibration parameters used
vary — they are the language in which
the improvements are quantified.

This dimension is very akin to software
(version control). Most of the time one
wants to use the latest — presumably
best — set of calibration parameters. But
occasionally one wants to use the ability
to go back in time and analyse using an
earlier best set of parameters.

For rules of good scientific conduct
it should be possible to track back
wrong calibrations and recover/repro-
duce spectra seen online even after up-
dating calibration files or procedures.
Example: someone shows a very nice
result in a conference as preliminary but
it turns out to be an artifact; to show no
ill intent one should be able to track the
root of the mistake. This example is ex-
treme but typically a wrongly calibrated
detector could give a peak online and
justify a longer beam-time, making back-
tracking important.

One further dimension come into play dur-
ing volatile stages of analysis:

e Per-user calibration parameters. De-
pending on the storage scheme used, this
may need to be explicitly catered for.

3 Players — Actors of the drama

This section shortly describes the two solu-
tions. For some background, the reader may
want to look at the Wikipedia articles for

“SQL” and “lexical analysis” and “parsing”.
They are probably equally scary.

3.1 Relational (SQL) databases

SQL stands for “structured query language”,
and is a language for interacting with rela-
tional database (RDB) engines. The actual
storage of the information is handled by the
database engine, or longer: relational data-
base management system (RDBMS). The in-
formation is logically handled in one or sev-
eral tables, with columns as fields and rows
as entries. Information is inserted and re-
trieved using SQL queries, using field entries
as keys.

As RDBMS one uses either a commercial or
open-source solution. The custom-produced
code needed is the interfaces between DAQ /
slow-control / analysis and the RDBMS that
uses SQL queries. One also needs to develop
tools that use/hide the SQL interfaces to let
the user insert and inspect the RDB informa-
tion in efficient ways.

Centralised - can they be decentralised
(still allowing merging)?

History keeping? (edit log?) versioning?

3.2 text files

With text files we mean human-readable
information structured with a well-defined
syntax. Think of C code (or better: structures;
as in declarative syntaxes like QML, CSS, ...),
with elements added to the syntax to aid each
use case; see Listings [[land 2l While a struc-
tured text file also can be regarded as a data-
base, we reserve that word for RDB schemes
in this document.

With the resemblance of source code, the
full arsenal of tools to handle source are also
available for the human interaction with the
text files. Where the soup sticks to the
spoon, and custom code is required, is for the



/I Split the signal into two, one
/I direct for timing to a CFD, the
/I other delayed for integration

/I going to a QDC.

SPLIT_BOX(r13clsl)
{
inl_8:

in9_16:

"N101" <- , rNP1lc21l/outl_8;
"N102" <- , rNP1c22/outl_8;
el 16: "N11" -> , r13c2s18/in0_15;

t1_8:
t9_16:

"N11"
"N12"

-> | rl2c¢2sl1/inl_8;
-> | rl2c2s2/inl_8;

}

Listing 1: Example of a structured, human-
and machine-readable, text -file, describing
part of an experimental setup.

machine reading of the information. Anyone
who has written manual parsers using scanf
and the like, know the associated pains and
bug-proliferation this approach induces.

Fortunately, tools to handle this task exist:
lexer and parser generators, e.g. flex and
bison . Given a description of the syntax,
they generate code to lexically analyse and
parse the text input. With small fragments
of appropriate (C) code in the syntax descrip-
tion, the produced program will at runtime
fill data structures with the interpreted in-
formation. These structures are then directly
usable by the DAQ / slow-control / ana-
lysis code. The generated lexer/parser also
provide error-handling, e.g. point out loca-
tions of syntax errors.

Throughout this document, we assume
that text files are used together with lexer
and parser generators.

/I Global detector synchronisation

TIME_SYNC_OFFSET((POS,1),( 91.5));
TIME_SYNC_OFFSET((N ), (-118.81));
TIME_SYNC_OFFSET((TFW), ( -78.7));

/I More adjustments (additive)

TIME_SYNC_OFFSET((TFW), (-6.3+0.315));
/I Further selective corrections,
/I per blocks of raw data files

LT_RANGE("64: 2: 5: 1: 222 ",
"64: 2. 5. 1: 232 ") {
TIME_SYNC_OFFSET((TFW),(0.17));
}
LT_RANGE("64: 2: 5: 1: 233 ",
"64: 2: 5: 1: 236 ") {
TIME_SYNC_OFFSET((TFW),(0.13845));
}

Listing 2: Example of calibration parameters,
with validity range limitations. (Slightly ed-
ited to fit two-column printing.)

4 Required features and
recurring tasks

There are a number of features that a help-
ful meta-data handling system has to exhibit,
given by common tasks and work-patterns.

R1 Easy inspection. It must be easy for a user
to see and inspect the parameters / set-
tings and values that are used. Note that
one must be able to find out both which
parameters are applied, and equally eas-
ily find which ones are not. lLe. obscure
overlay features which cannot easily be
followed must be avoided.

R2 Easy modification. It must also be fairly
easy to add or modify parameters and
values. Also in batch, e.g. from (semi)-
automatic calibration programs.



R3

R4

R5

R6

Easy debugging. It must also be fairly
easy to selectively enable or disable sets
of parameters, or use alternative tables
without destroying the temporarily un-
wanted bunch. This kind of operation is
common during debugging, but should
leave no or little trace in the history
(i.e. along ftanalysis), as the copious test
changes otherwise clutter the interesting
development.

Simple interface in the program code.
Program developers need easy-to-use
routines and programming patterns to ac-
cess the parameters. Preferably relieving
them of having to perform (i.e. program)
recurring functionality — thus avoiding
lots of copy-paste code. This requirement,
in particular its fulfilment, can of course
be interpreted very subjectively.

Easy access is required not only for the
big full-featured analysis codes, but is
equally or even more important also for
small temporary scripts (hacks) to invest-
igate parts of a parameter set. This re-
stricts the use of complex access schemes,
or calls for several but equally powerful
ways of accessing the information.

Global and local history. For an experi-
ment collaboration as a whole to be able
to conduct itself scientifically, it must be
possible to keep a history of used para-
meter (values). It must likewise be pos-
sible for single (or groups of) users to
keep local histories during their devel-
opment, without jumbling the global his-
tory with dead-end attempts. The global
history need not be linear, it can also
contain branches mirroring local devel-
opment paths.

Assure possibility to analyse any exper-
iment 10 years after last paper written
(proper scientific practice following e.g.

BNBF regulations). We know of ex-
periments which could not be looked
at again due to missing logbook and
setup descriptionsﬁ Whichever solution
is chosen, it should help to avoid this situ-
ation.

5 SOQL propaganda

This section should present the features, ad-
vantages and arguments for using RDB data-
bases to store calibration parameters and
other meta-data of an experiment. As the au-
thor is not well versed in RDB databases, SQL
or otherwise, the list is short and incomplete?

The reader is encouraged to help extend
the document!

e The centralised database-keeping en-
forces the participants of a collabora-
tion to use established sets of calibration
parameters for analysis.

o Access to needed parameters is fast.

e Declaring the time range of validity of a
parameter is easy by tagging of entries in
the database tables.

e Solutions exist allowing interfacing of
simulation/analysis/slow-control. This
should allow more realistic simulations
of a beam time by taking into account
e.g. the failing of a PMT and the impact
in the final result.

Help! This cannot be it??

*In addition to DAQ/slow control logs and experi-
ment logs, also analysis logs (per user) need to be re-
tained and available.



R
%&
[ Update RDB
A
) S
A b5}
| = 18
\ <
| 2]
| View
\ Use
\\ (e.g. analysis)
\\ P
B
NG
“~-4 Result

~~+ Result

Figure 3: Flow of data in an RDB approach
(left), and with text files as primary stor-
age (right). The difficult (binary) structur-
ing work is marked in (red) underlined-bold-
italics.

6 text file solutions

Together with standard UNIX tools, a full tool-
chain for using text files as the primary in-
formation storage can be provided.

Information used by a computer needs to
be arranged in (binary) structures in one way
or another. The SQL approach mainly does
this at the storage level, thus making the in-
put stage into a program using the informa-
tion simple. The text file solution defers the
non-trivial structuring work until right be-
fore use. See Figure [3 for a comparison. By
taking advantage of lexer /parser-based tools
this otherwise very difficult stage becomes
rather cookbook-like. Later use stages are
then again straight-forward.

6.1 Handling

Handling text files is a lot like handling any
other source code.

The bulk of data (especially for calibration
parameters) is generated by programs. It can
be as simple as printf  invocations. (For
good readability of the information, good in-
dentation of the output has to be provided.)
By using the file system well, one can keep
quite some order and separation of different
sets of parameters. Le. by dividing and con-
quering the parameters in different files and
use #include (or similar) directives book-
keeping is simplified.

The size of a number represented in
decimal is about 2.4 times larger than a bin-
ary representation. It evens out a bit by
decimal values only storing the significant di-
gits, while binary formats are fixed-width. In
any case, we are not even close to an order-
of-magnitude difference in storage needs.

6.1.1 Viewing

In addition to using an editor, the files with
information can be searched using e.g. GREP
and LESS, differences highlighted by DIFF.
One drawback is the line-orientation of these
tools. They have a hard time handling con-
text information that is spread in statements
over multiple lines.

Leveraging the human brain! With its
exceptional pattern-recognition capabilities,
these built-in classification facilities can be
used on the easy direct-view text files, at least
when well formatted. Much less so on the
RDB tables, if one even manages to at all
wring them out of the RDBMS.

6.1.2 Modifications

Simple, but tedious modifications, e.g. due
to some nomenclature change in the ana-



lysis programs can often be performed us-
ing some general text mangling tool: SED and
PERL/PYTHON.

The most common form of modifications to
large sets of parameters is post-processing /
filtering of data from a calibration tool, per-
formed by some dedicated script or program.

6.1.3 Even faster access

Even with similar storage sizes, parsing a text
file is computationally more expensive than
direct reading of binary data. For most use
cases (e.g. slow-control, DAQ setup), this ad-
ditional overhead is irrelevant. In analysis, it
can become a bottle-neck. But while the text
files are the primary storage, they need not
be used directly by an analysis process. By
organising the lexing/parsing of the primary
input into an intermediate storage in a man-
ner like a usual compile-link-execute scheme,
only changed files need to be re-read. As the
intermediate storage is volatile, it can be care-
fully designed to match the needs of the ana-
lysis process, allowing it to be even treated
memory-mapped and accessed as structures
directly, without any expensive API calls.
Yielding unrivalled access speeds.

6.1.4 History keeping

Version control systems (VCS), as used for
source code control, can be applied to meta-
data like setup descriptions and calibration
parameters. Everything spanning fanalysis 18
handled by the VCS. Analysis tools, para-
meter parsing, etc. then one only has to care
about one layer in the £ ,1ysis dimension.

GIT by its distributed nature fulfils the R
requirement of being able to handle both a
global history, and allow individual users to
keep track of their separate developments
and scratch-pad attempts.

*Atleast for short-cycle iterative development work.

With a little care, some VCS systems even
can co-exist, e.g. CVS as an central (upstream)
repository and GIT used side-by-side.

6.1.5 Different versions

During debugging, one is often faced with
the question why something that worked be-
fore does not work any longer. When test-
ing, one may then end up with inconsisten-
cies between code and parameters. The old
code does not read new sets of parameters or
vice versa. For successful testing, modifica-
tions to both must then be possible.

How to handle that in a database? Local
system? One should keep in mind that it is at
these occasions that one has the most use of
powerful history-juggling tools. Only having
a crippled tool-chain available at these times
makes debugging more painful than neces-
sary.

7 Remarks

7.1 Policing work-flow

Policing is counter-productive. People end
up with their own code in their own corner. ..

While there at “the end of analysis” really
should be only one set of calibration para-
meters to describe an experiment, used to de-
rive all extracted physics results, this unfor-
tunately tends not to be the case in practice.
People have a habit to use their own “op-
timal” parameters. And there lies the scare:
have they thus biased their results? This cer-
tainly is an important issue for a serious col-
laboration.

It may be tempting to try to police this
situation using technical means — essentially
only allowing one central repository of para-
meters. This is likely to just lead to a pleth-
ora of local hacks to handle and override
parameters individually. Which then become



very hard indeed to follow and ever recon-
cile. Better then to, from the technical point,
provide a system which can deal with both
central (global) and local parameter sets, us-
ing common tools to allow merging. And to
do the harmonisation efforts where they be-
long: as collaborative and social discussions
(the Spanish Inquisition?).

7.2 No XML

While superficially being text files, and with
a known format, files on XML format might
be suggested as a solution. Not so. They run
afoul of several principles:

e Readability. An XML file is so full of
“syntactic sugar” (keywords and other
markup), that the actual payload be-
comes severely obscured. Extensive
XML edits using any normal text editor
is a wicked exercise without pleasure.

e Wrong level parsing / grammar descrip-
tion. While the well-established gram-
mar of XML files lend themselves to
efficient parsers, it at the same time
makes it almost impossible to leverage
the productive lexer/parser chain de-
scribed above for the actual file content.
In other words, the XML storage is as
useless for the programmer as an SQL
storage. The API provides the pieces of
data, but not the relationships “automat-
ically”.

Why use a blunt axe, when a sharp one is
available?
7.3 Trees, not tables

An experimental setup is like a Matryoshka
doll — facility, setup, detector, segment,

5Because it hurts more?

10

channel. It is natural to describe the topo-
logies of such a system as a tree. (Natur-
ally, when several identical leaves or sub-
branches occur, one declares just one and ref-
erences it multiple times.)

7.4 Reliability

With text files handled together with a dis-
tributed VCS, the parameters as well as the
full utility toolbox are available for analysis
work whenever the used (local) computer
and its file-systems are operational.

For a centrally administered remote data-
base, the uptime and load of the RDBMS has
to be taken into account, as well as the neces-
sary network connectivity and access.

7.5 Rants

Some proposed ways of using SQL data-
bases tout “simple” wrappers around the al-
legedly otherwise difficult to use SQL inter-
faces. Which for the author begs the ques-
tion: if SQL database engines are so good,
why hide the back-end and only use a very
small subset? It seems to become little more
than just a big hash table (of key-value pairs)?

7.6 text files in use

Handling of calibration parameters and setup
description by human-readable text files is in
production use at the LAND/R?B setup since
more than 10 years. Essentially as described
in Section [6 with the exception of the per-
formance optimisations described in[6.T.3]not
being implemented yet. Users so inclined are
using VCS systems to keep track of their (and
others’) parameter sets.

Experience (from trying the opposite) is
that calibration parameters are best kept sep-
arate for separate experiment beam-times. To
ensure lasting synergy effects from having



similar setups, analysis code however needs
to be kept common. Manual sharing of im-
provements and bug-fixes is very limited in
practice.

References

[1] H. T. Johansson, Hunting tools beyond the
driplines, PhD thesis, Goteborg, 2010,

http://fy.chalmers.se/ ~ f96hajo/phd/htj_thesis.pdf

[2] The ROOT system homepage,
http://root.cern.ch (2013-08-26).

[3] CERN Program Library,
http://cernlib.web.cern.ch/cernlib/

(2013-08-26).

11


http://fy.chalmers.se/~f96hajo/phd/htj_thesis.pdf
http://root.cern.ch
http://cernlib.web.cern.ch/cernlib/

	Introduction
	Types of data
	Raw data (events; list-mode)
	Processed data (events)
	Source code
	System topology / DAQ setup
	Slow-control settings
	Slow-control logs
	Calibration parameters

	Players — Actors of the drama
	Relational (SQL) databases
	text files

	Req. features and recurring tasks
	SQL propaganda
	text file solutions
	Handling
	Viewing
	Modifications
	Even faster access
	History keeping
	Different versions


	Remarks
	Policing work-flow
	No XML
	Trees, not tables
	Reliability
	Rants
	text files in use


