
Solutions/answers to selected problems of the exam
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COURSE CODES: TIF 155, FIM770GU, PhD

Time:
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Allowed material:
Not allowed:

April 12, 2017, at 1400 − 1800

Johanneberg
Kristian Gustafsson, 070-050 2211 (mobile), visits once at 1500

Mathematics Handbook for Science and Engineering
any other written material, calculator

Maximum score on this exam: 12 points (need 5 points to pass).
Maximum score for homework problems: 24 points (need 10 points to pass).
CTH ≥20 passed; ≥27 grade 4; ≥32 grade 5,
GU ≥20 grade G; ≥ 29 grade VG.

1. Short questions [2 points] For each of the following questions give a
concise answer within a few lines per question.

a) What defines a conservative dynamical system?

b) What is the difference between a conservative dynamical system and a
Hamiltonian dynamical system?

c) Explain the main differences between a supercritical and a subcritical
bifurcation.

d) Explain what a Hopf bifurcation is.

e) State three properties of the index of a curve, IC .

f) Explain what a fractal (strange) attractor is.

g) What conditions must be satisfied for a system to show a fractal (strange)
attractor?

h) What is the significance of the parameter q in the generalized dimension
spectrum Dq?
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2. Bifurcation [2 points] Consider the dynamical system

ẋ = ax+ y + x3

ẏ = x− y ,
(1)

with a real parameter a.

a) Find all fixed points of the system (1) and give conditions on a for
which the fixed points exist.

Solution
Fixed points:
(x∗1, y

∗
1) = (0, 0)

(x∗±, y
∗
±) = ±

√
−a− 1 · (1, 1) if a < −1.

b) Use linear stability analysis to classify the fixed points you found in
subtask a) as functions of the parameter a.

Solution
The Jacobian of the system (1) is

J =

(
a+ 3x2 1

1 −1

)
trJ = a+ 3x2 − 1

det J = −a− 3x2 − 1

Evaluated at the fixed points we have

trJ1 = a− 1

det J1 = −a− 1

trJ± = −2a− 4

det J± = 2a+ 2

The eigenvalues of all the fixed points are real for all values of a.

The fixed point at (0, 0) is a stable node if a < −1 and a saddle point
if a > −1.

The other two fixed points are saddle points when a < −1.

c) Plot the bifurcation diagram for one of the components of the fixed
points, for example x∗, against the parameter a. Label each branch
plotted with the type of fixed point you found in the classification in
subtask b). What kind of bifurcation(s) do you obtain?

Solution
Subcritical pitchfork bifurcation at a = −1.
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3. Non-linear stability analysis and phase portrait [2 points] Con-
sider the system

ẋ = y − xy2

ẏ = −x+ yx2 .
(2)

a) Find all fixed points of the system (2).

Solution
One fixed point at the origin (x∗, y∗) = (0, 0) and curve of fixed points
at (x, 1/x).

b) What does linear stability analysis predict about the fixed point(s)?

Solution
The Jacobian is

J =

(
−y2 1− 2xy

−1 + 2xy x2

)
.

For the fixed point at the origin linear stability theory predicts a center.

For the line of fixed points we obtain

J =

(
−1/x2 −1

1 x2

)
.

with eigenvalues λ1 = 0 and λ2 = (x4−1)/x2. One eigenvalue being zero
is consistent with a non-isolated fixed points. The second eigenvalue is
either positive (|x| > 1) or negative (|x| < 1).

c) Sketch the phase-plane dynamics in the region −2 ≤ x ≤ 2 and −2 ≤
y ≤ 2. In order to do this, it may be helpful to express the dynamics
in polar coordinates.

Solution
Trajectories lie on circles centered at the origin. When the radius be-
comes large enough it intersects the curve of fixed points. The flow
changes direction at intersections.

d) Classify the fixed point at the origin for the non-linear system (2).

Solution
Using symmetry properties of the flow it can be shown that we must
have a non-linear center.

An alternative approach is to use polar coordinates

ṙ =
xẋ+ yẏ

r
= 0

i.e. all trajectories are circles.
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4. Infinite-period bifurcation [2 points] Consider a dynamical system
in spherical coordinates

ṙ = r − r3

θ̇ = µ− sin θ ,

where r > 0 and µ is a real parameter.

a) For µ < 1 and for µ > 1, find all attractors of the corresponding
Cartesian dynamical system (you do not need to change to Cartesian
coordinates if you do not want to).

Solution
Since the dynamics of r and θ are uncoupled we may analyze the dy-
namics as two one-dimensional systems. Plotting the dynamics shows
that the radial dynamics has a repelling fixed point at r∗ = 0 and an
attracting fixed point at r∗ = 1.

For the case µ > 1, the dynamics of θ has no fixed points. For this case
the Cartesian dynamical system has a globally attracting limit cycle.

For the case µ < 1, the dynamics of θ has two fixed points located
at θ∗ = asin(µ) and θ∗ = π − asin(µ). Plotting the dynamics shows
that the fixed point at θ∗ = asin(µ) is stable and the other fixed point
is unstable. The dynamics is therefore globally attracted to the point
(r∗, θ∗) = (1, asin(µ)).

b) Describe the bifurcation that happens as µ passes unity.

Solution
Infinite-period bifurcation, see lecture notes.

c) For any closed orbit(s) of the system, estimate the dependence of the
period time on µ (up to a prefactor) close to µ = 1.

Solution
The bifurcation in the θ-dynamics is a saddle-node bifurcation. Before
the fixed points are formed, the dynamics in θ will slow down close to
θ = π/2 where the bifurcation occurs. Close to a saddle-node bifurca-
tion, the period time is dominated by the time to pass the ‘ghost’ of
the fixed points. The time to pass this region scales as T ∼ 1/

√
µ− 1,

see lecture notes.

d) Give a motivation of why the time dependence you calculated in subtask
c) may be useful.

Solution
It could be useful for analysis of experimental data: Measuring how the
experimental period time changes with some control parameter close to
the bifurcation may give information of possible dynamics underlying
the experiment (different types of bifurcations have different depen-
dence on the control parameter).
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5. The deformation matrix [2 points] Consider the dynamical system

ṙ = µr − r3

θ̇ = ω + νr2
(3)

with a real parameter µ.
In the problem sets you were supposed to show that the corresponding dy-
namical system in Cartesian coordinates x = r cos θ and y = r sin θ is

ẋ = µx− yω − x3 − νy3 − νx2y − xy2

ẏ = ωx+ µy + νx3 − y3 − x2y + νxy2 .
(4)

The deformation matrix M is defined as the matrix projecting an initial
infinitesimal separation vector δ(0) to an infinitesimal separation δ(t) at t:

δ(t) = M(t)δ(0) .

The stability exponents of separations are defined as

σ̃i ≡ lim
t→∞

1

t
lnmi

where mi is the i:th eigenvalue of M.

a) For the case µ > 0, find the radius and period time of the attracting
limit cycle in the system Eq. (3).

Solution
The radial dynamics has a stable fixed point at r∗ =

√
µ (the radius

of the limit cycle). At this radius, the angular dynamics reads θ̇ =
ω + νµ, i.e. the angular frequency is ω + νµ and the period time is
T = 2π/(ω + νµ).

b) Analytically calculate the stability exponents of separations when µ < 0
(OBS: different limit compared to subtask a)) for the system (4) in
Cartesian coordinates.

Solution
In general, the separation vector δ is governed by the linearized dy-
namics

δ̇(t) = J(t)δ(t) .

When µ < 0 the system has a globally attracting fixed point at (x∗, y∗) =
(0, 0). We are interested in the dynamics at large t. In this limit we are
close to the fixed point and the Jacobian approaches a constant matrix

J(t→∞) =

(
µ −ω
ω µ

)
with eigenvalues σ1,2 = µ± iω.
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In this limit we solve

δ(t) = eJ(t→∞)t︸ ︷︷ ︸
M(t)

δ(0) .

The eigenvalues of M thus becomes

m±(t) = eσ1,2t = e(µ±iω)t .

Using the definition the stability exponents of separations become

σ̃± = µ± iω .

c) Analytically calculate the stability exponents of separations when µ < 0
for the system (3) in polar coordinates.

Solution
When µ < 0 the polar system is attracted to r∗ = 0, but θ changes
linearly with time.

The Jacobian of the polar system for large time t (i.e. evaluated at
r = 0) is

J(t→∞) =

(
µ 0
0 0

)
The eigenvalues of M thus becomes m1(t) = eµt and m2(t) = 1 with
corresponding stability exponents of separations

σ̃1 = 0

σ̃2 = µ

d) In the problem sets you were supposed to use a relation for the trans-
formation of the deformation matrix under a general non-singular co-
ordinate transformation x = G(y):

My(t) = J−1G (y(t))Mx(t)JG(y(0)) . (5)

Here Mx(t) is the deformation matrix in the original coordinates,
My(t) is the deformation matrix in the transformed coordinates, and
JG(y(t)) is the gradient matrix of the transformation G with compo-
nents

[JG(y(t))]ij =
∂xi
∂yj

.

Does the relation (5) apply to your results in subtasks b) and c)?

Solution
We can view a fixed point as a closed orbit of zero period time. The
relation (5) should therefore hold for all times t. However, as the results
in subtasks b) and c) show, this is not true (the eigenvalues of the
deformation matrices in b) and c) differ). The reason for this is that
the coordinate transformation JG has the eigenvalues 0 and cos θ as
r → 0 and is therefore singular.
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6. Box-counting dimension [2 points] The figures below show the first
few generations S1, S2, S3 and S4 in the construction of modified versions of
the middle thirds Cantor set. For each figure the fractal set is obtained by
iterating to generation Sn with n→∞.

a) Start by a two-dimensional strip of finite width and height. Analyti-
cally find the box-counting dimension D0 of the fractal set, obtained by
at each generation removing the middle third horizontal interval out of
three equally sized horizontal intervals:

Solution
Covering the fractal with boxes of side length εk = 3−k the total number
of boxes is proportional to Nk = 3k2k. The box-counting dimension
becomes D0 = ln(3k2k)/ ln(3k) = 1 + ln(2)/ ln(3).

b) Start by a two-dimensional strip of finite width and height. Analyti-
cally find the box-counting dimension D0 of the fractal set, obtained by
at each generation removing both the middle third horizontal and ver-
tical intervals out of three equally sized horizontal and vertical intervals:

Solution
Covering the fractal with boxes of side length εk = 3−k the total number
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of boxes is proportional to Nk = 4k. The box-counting dimension
becomes D0 = 2 ln(2)/ ln(3).

c) Discuss how the results in subtasks a) and b) are related to the box-
counting dimension of the middle-third Cantor set.

Solution
The middle third Cantor set has box-counting dimension Dcantor

0 =
ln 2/ ln 3 (see lecture notes). In subtask a) we add one dimension to the
Cantor set and the box-counting dimension becomes D0 = 1 +Dcantor

0 .
In subtask b) the total dimension of the fractal set is the sum of the
Cantor sets: D0 = 2Dcantor

0 .
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