(2) 0.021 7 m/s; (b) 2000 028.9 Hz;
e, oo o et T T e v —— 4=.AQVN°8CWQ.-WE .

P13.36 439 Hz and 441 Hz
00 ¢cm, 2.98 m, 0.576 Hz, 1.72 m/s
P13.38 a) 325 m/s; (b) 29.5
+6.67 cm ® ® e
P1340 (2} longitudinal ; (b) 665 5
(a) -1.51 mfs, 0 mys?; (b) 16.0 m, 0.500 s,
32.0m/s P13.42 ~1min

see the sclution . s @mzwh@wilpw@ :

1.64 E_\wn

m/s
(@) v=|304 ——m; (b)389 kg
Jkg ). . P1346 (a) v= ‘mu ; (0) 31.6 mfs

(a) zero; (b) 0.300 m .
P13.48  see the solution

@ quAq.gxaanva%.?lmza ;
L4t P13.50 130 m/s, 1730
) 625 W . o i "
Pi352 782
28 "
P13.54  {a) 0.515/min; (b) 0.614/min
0,19 s fi @061
. , 2%
5.67 P13.56 @H 25-f; (b)85.9 Ha
B

L
{2) 0.625 mm; (b) 1.50 mm to 75.0 zm
P13.58 (2} see the solution; (b} 0.343 my;

{a) 2.00 g, 46.0 cm, 54.6 m/s; () 0.303 m; (d) 0.383 m; () 1.03 kHz

{b) -0.433 sm; (c) 1.72 mm/s
o P13.60  (a) see the solution; (b) 531 Hz

N P1332._.0.103Pa.... e

mcnm_.vow:wo: and
Standing Waves

CHAPTER OUTLINE
141 The Principle of
Superposition
14.2 _Roamwmmo_c of Waves >zm<<m—ﬂm ._-o Dcmmnﬂ_ozw
143  Standing Waves
144 Standing Waves In Str
anding Waves In >rngs No. Waves with other waveforms are also trains of disturbance that

Standing Waves in Alr Q141

1456
Columns ) add together when waves from different sources move through the

145 Boats: Interference in same medium at the same time,

14.7  Nonsinusoidal Wave

148 Mmswﬂw Q142  No. A wave is not a solid object, but a chain of disturbance. As

: nte: : . "
Connection—Buikiing on described by the principle of superposition, the waves move through
Antinodes each other.

Q143  They can, wherever the two waves are nearly encugh in phase that their displacements will add to
create a total displacement greater than the amplitude of either of the two original waves.

When two one-dimensional sinusoidal waves of the same amplitude interfere, this
condition is satisfied whenever the absolute value of the phase difference between the two waves is
less than 120°.

0144  When the two tubes together are not an efficient transmitter of sound from source to receiver, they
are an efficient reflector. The incoming sound is reflected back to the source. The waves reflected by
the two tubes separately at the junction interfere constructively.

0145  No. The total energy of the pair of waves remains the same. Energy missing from zones of
destructive interference appears in zones of constructive interference.

Q146  Damping and non-linear effects in the vibration turn the energy of vibration into internal energy.

Q147  The air in the shower stall can vibrate in standing wave patterns to intensify those frequencies in
your voice which correspond to its free vibrations. The hard walls of the bathroom reflect sound
very well to make your voice more intense at all frequencies, and giving the room a longer
reverberation time. The reverberant sound may help you to stay on key.

Q148  The trombone skide and trampet valves change the length of the air column inside the instrument,
to change its resonant frequencies.
Q149  In a classical guitar, vibrations of the strings are transferred to the wooden body through the bridge.

Because of its large area, the guitar body is a much more efficient radiator of sound than an
individual guitar string. Thus, energy associated with the vibration is transferred to the air relatively

rapidly by the guitar body, resulting in a more intense sound.
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tes of the NA- &ﬂm..ﬁm in the fundamental vibzation. If the pipe is open, resonance
ave NA Ems.nnmm that are all integer mncﬂarm_mm n.m ?a Z> m.mnmanm in the

FIG. Q14,10

Qi411 The bow string is pulled away from equilibrium and released, similar to the way that a guitar string
is pulled and released when it is plucked. Thus, standing waves will be excited in the bow string. if
the arrow leaves from the exact center of the string, then a series of odd harmoenics will be excited.
Even harmonies will not be excited because they have a node at the point where the string exhibits
its maximum displacement.

Q1412  What is needed is a tuning fork—or other pure-tone generator—of the desired frequency. Strike the
tuning fork and pluck the comresponding string on the piano at the same time. If they are precisely
in tune, you will hear a single pitch with no amplitude modulation. If the two pitches are a bit off,
you will hear beats. As they vibrate, retune the piano string until the beat frequency goes to zero.

1413  Beats. The propellers are rotating at slightly different frequencies.

Q1414 Walking makes the persont’s hand vibrate a little. ¥f the frequency of this motion is equal to the
natural frequency of coffee stoshing from side to side in the cup, then a large-amplitude vibration of
the coffee will build up in resonance. To get off resonance and back to the normal case of a small-
amplitude disturbance producing a small-amplitude result, the person can walk faster, walk slower,
or get a larger or smaller cup. Alternatively, even at resonance he can reduce the amplitude by
adding damping, as by stirring high—fiber quick~cooking oatmeal into the hot coffee.

Q1415  Stick a bit of chewing gum to one tine of the second fork. If the beat frequency is then faster than

4 beats per second, the second has a lower frequency than the standard fork. If the beats have
{1 e —- glowed: down; the second-fork-hasa-higher frequency-than-the standard-Remove the gum, clean the
fork, add or subtract 4 Hz according to what you found, and your answer will be the frequency of
the second fork.

Q14.16 Instead of just radiating sound very softly into the surrounding air, the tuning fork makes the
chalkboard vibrate. With its large area this stiff sounding board radiates sound into the air with
.. higher power. So it drains away the fork’s energy of vibration faster and the fork stops vibrating
sooner, This process exemplifies conservation of energy, as the energy of vibration of the fork is
transferred through the blackboard into energy of vibration of the air.

SOLUTIONS TO PROBLEMS
Section 14.1 The Principle of Superposition

P41 y =1 +y; =300cos{400x ~1.608)+4.00sin(5.0x - 2.00f) evaluated at the given x values.
4 =3.00c08(2.40 rad)+ 4.00sin{+3.00 rad) = [-165 cm |

y =3.00c0s{(+3.20 rad) + £00sin(+400 rad) = | 602 cm |

@ 2=100, t=1.00
®) x=1.00, £=0500
© x=0500, t=0 y=3.00c05(+2.00 rad)+ 400sin(+2.50 rad) uE

P14.2

FIG.P142

P14.3 (@) 3, = f(x—t), so wave 1 travels in the E
Yo = fx+ i), s0owave2 travels in the E

5 _ +5

®)  Tocancelm+y =0 T Gar a6y 42

(Bx-4) = (3x+4t-6)
3x— 4 = £(3x + 4t —6)

for the positive root, 8t=6 t=0750s

(at t=0.750 s, the waves cancel everywhere)

(0  forthenegativercot,  6x=6 E

{at x =1.00 m, the waves cancel always)




¢ the waves are sinusoidal,

(400 cmsin(kx ~ @) + (400 cm) sinfks ~ &t +50.0°) ..

2(4.00 cm}sin{kx ~ & + 45.0°) cos 45.0°

So the amplitude is (8.00 cm) cos GbouE. :

"7 The resultant wave function has the form

AR ¢
=24, — - £
y onoAmvwﬁTn eI.L
@ mummsnomm&uﬁm%w iy
®) T%unSSau 600 Fiz
T 2z
Nmanowﬁ.mwn?mo LINRETE ) IOy
by 5 o8 2 =60.0 =3
Thus, the phase difference is g=120°=2%
3
This phase difference results if the time delay is T =LA
. 3 3f %

y 3.00 m
Time delay = =
Y wﬁN.co 5\.& E
Waves reflecting from the near end travel 28.0 {140 mdo i
4 . g wn and 14.0 m back), while
reflecting from the far end travel 66.0 m. The path difference for the two waves Wm e
Ar=660m~280m=380m

Since =z

f
{an)f _ {380 m)(245 Hz)

Aot

Then

Ar
I = 27,254

L e d it
or, Ar=27.2541

The phase difference between the two reflected waves is then

#=0.254{1 cycle)=0.254(27rad) = E

P43 (a)
b}
P189  (a)
)

Then,
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Ax=+/9.00+200 —3.00=+13 - 3.00=0.606 m

The wavelengthis A=—=——=114m

Thus, & ﬂmmoh = (.530 of a wave,

A 1M

or  Ag= uic.mgqu
Ax

L. Ax
For destructive interference, we want 4= 0.500=f >

¢, =(20.0 radf/cm)(5.00 cm}—(32.0 rad/s}2.00 s)=36.0 rad
¢ ={25.0 rad/cm)(5.00 c) - (400 rad/s)}2.00 5)=45.0 rad

A¢=9.00 radians =516°=] 156° |

Ag=|20.0x - 32.0¢ - [25.0x - 40.0¢] =|-5.00x + 8.004
At £=2.00s, the requirement is

Ag= *lm.8n+mb2mbcv_ =(2n+1)x for any integer n.

For x<3.20, -5.00x+16.0 is positive, so we have

—S5.00x+16.0=2n+ )z, or

The smallest positive value of x occurs for n=2 and is

4+
Huw.glaum.mblﬁ.u 0.0584 cm |.

P1410 Suppose the man's ears are at the same level as the lower speaker. Sound from the upper speaker is
delayed by traveling the extra distance Ar =12 +d% —L.

A
2

He hears a minimum when Ar={2n— Cﬁlu withn=1, 2, 3, ...

Yo
1% +42 L.uTumgL

2, 2 1Yz
H.N +&N "HBlMHMQ.Th

B -w@m%w@:m

continued on next page




446}

: Hm?mm The distanices fromi the lower speaker at which'the man will hear a minimum. The
vmm._.&mmnmznm Ar starts from nearly zero when the man is very far away and increases to d when

The number of minima he hears is the greatest integer value for which L20. This is the

same as the greatest integer solutionto d2 ? |W Wu. or

number of minima heard ‘= 1y, = greatest integer < nmwu +W .

From equation 1, the disfances at which minima GG ave given by

-(n-1°)
2(n- 1Y)

F]

wheren=1, 2, ..., Bmax |-

L, =

First we calculate the wavelength: 2 n.w = wm.mnmm =160m

Then we note that the wmar. difference equals 900 m—1.00 Bu-

Therefore, the recetver will record a minimum in sound intensity.

We choose the origin at the midpoint between the speakers. If the receiver is Tocated at point

(x, 1), then we must solve:
JEe5007 +y2 ~flx-500)° +¥? u.w»
?m.ccvu +yf =yf(x—5.00° +y* +|MJ~

2 2, .2
NQ.QHIM“ aHlm.DOu +¥y

Then,

Square both sides and simplify to get:

Upon squaring again, this redizces to: 400x 10023 + HM 5" A(x-5000 + "

Substituting =160 m, and reducing, 9.00x% —16.0y* =144

Or-—— - - —————=

(When plotted this yields a curve called a hyperbola.)

Section 14.3 Standing Waves

%y 2 %y 2 s
22 = ANk  sinkxcoswt Lo = DA w* sinkxcos @
x* at?

| @

Substitution into the wave equation gives

This is satisfied, provided that v um
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PI412  y=(150m) sin(0.400x) cos(200t) = 24, sin kxcoswt
Therefore, k= 27 _.400 rad/m A= 2z =157 m ]
" A 0.400 rad/m
@ 200 radfs
dw=2 =—= =| 31.8
and 9 =2#f s0 f 27 27rad E
. A A o 200 rad/s
The speed of wav the mediu =M e—2rf=—= =
e speed of waves in the mediumis v A= f F 0400 radjm E
P1413  The facing speakers produce a standing wave in the space between them, with the spacing between
nodes being
A_ v _ HU3mfs
== =0.214m
M2 2f 2(s00s)
f the speakers vibrate in phase, the point halfway between them is an antinode of pressure ata
distance from either speaker of
125m_o6s.
2
Then there isa node at 0.6: 028 e m
I ) }
anodeat 0518 m—0214m UE
anodeat 0303 m—-0.214m=| 00891 m
anodeat 0518 m+0.214 m=[ 0732 m |
anode at 0.732 m+0.214 m HE
. andanodeat 0947 m+0.214 m=[116 m | from either speaker.
P1414  y=2A,sinkrcosal

a2 Ak sinkxcoswt= AV 24,0? sinkecos ot
0 en 1t




Fi4.16

@

.wp.‘u..._”

) sin(ma)eos(O800FE) . s e

‘We can take cos{0.6007t)=1 to get the maximum y.

Ymax = (6.00 cm)sin(0.2507) HE
Yo = (6:00 con)sin(0.5007) = [ 6.00 em |

Now take cos{0.6007t)=~1 to get V!

At x=0250 ¢cm,

At x=0500 cm,

At x=150 cm, Ymax =(6.00 cm}sin(L507)(-1) uE
The antinodes occur when  x= % (1=1,3,5..)
m..;nuqauﬁ,mo A=200 cm

A
and x1 = =[0500 an Jas in )
5= 2 <[ am] sin @

The resultant wave is
The nodes are located at E?Tm =nr
nw ¢
50 IO
TR Tk

which means that each node is shifted mrﬂ to the left.

Hrmmmwmnmmou%uommmmmbn M—H? +H Nlh;l ﬁ@.lh | a=Z
wmw »p__ﬂ _r

The nodes are still separated by half a wavelength.

. Section 14.4 Standing Waves in Strings

P1417  L=300m; z=900x107 kg/m; T=200N; f, u.%

T\
where v= ﬁﬂu =47.1 mfs

471
50 fi= N 0.786 Hz
f3=3f1=| 236 Hz
P1418 L=120em, f=120Hz

(@) For four segments, L=24 or 2=60.0 nB.l.E

) o=Af=720 mjs f=o= o =[300 T ]

25,1772}
fo=t5-[5T0EE]

Pi419  The tensionin the string is

T=(4kg)(98 myfs*)=392N

Chapter 14 389

-3
m_8xWT ke _y6x10° kgjm

Its linear density i ===
ear density 1S A T = m

and the wave speed on the string is v= m =

In its fundamental mode of vibration, we have

16x107 kg/m

=156.5 mys

e j3-128 me(i57TE

Let 1 be the number of nodes in th
#+1 is the number of nodes for the stan.

standing waves, \vum\ and the frequency is f ulu\,m.
n

r1420 (a)

n (T,
Th =—
s f 2LV u
n+l [T,
d als - a+l
and also f TR
Thus, ntl_
n
Therefore, dn+4=5n,0orn=4

4 rpm.o kg)(9.80 m/s*) s

Then, =
hen, f=2zmmY 000200 kg/m

continued on next page

e standing wave resulting from the 25.0-kg mass. Then
ding wave resulting from the 16.0-kg mass. For




¢ 12
nh~ where p= H.
2L I

(&) ILisdoubled, then f, «L™ will be reduced by a factor L.
2

(b) ¥ gis doubled, then f; oz will be reduced by a factor 1
{© ¥ T is doubled, then f; «+/T will increase by a factor of /2.

For the wheole string vibrating, d,y; =0.64 Buuw. A=128m, The
i A=128m,

A N

speed of 2 pulse on the string is v = 2 nwmcmu.mm. m=422 mfs
. h '

(a) When the string Is stopped at the fret, dy ﬂWa.mm m=2

A=0853m- 3 2’
v _ 422 mys

Ty KL

®) .;.m light touch at a point one third of the way along the
string damps oﬁ vibration in the two lowest vibration
states of the siring as a whole. The whole string vibrates in

its third resonance possibility: 3d,p; =0.64 m= mm ;
A=0.427 m

2

FIG. P14.22(a)

EIG. P14.22(b)

b P23 digy 20700 m

A=140m
T

fA=v=308 _.Bm\mu

P14.24

P14.25
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A =2(0.350 éumﬂwh Ay=2L, uh\,

Lg-La=Lg Ah.m&wn unnh lwgna.wmo Evﬁ ..anw.unobwmu B

Thus, Ly =Lg —00382m= 0.350 m—-0.0382 m=0312 m,
or the finger should be placed [ 31.2 cm from the bridge |-

L l.hulmlgw.&u nnﬂ.m_ﬁﬁmwmﬁ x
AT, 2fa ¥ AT uf T Ly 2T

&.&L c.%ona
]nplbu nP%
T "L, (350-382)cm !

in the fundamental mode, the string above the rod has only
two nodes, at A and B, with an anti-node halfway between A
and B. Thus,

Since the fundamental frequency is f, the wave speed in this
segment of string is

2Lf
cosd

Also, v= H = T = L where T is the tension in
M §\Nm L mecosf P,

this part of the string, Thus,
af _[TL . a2 1L

v=Af=

eo 1]

cos® VmcosB  cos?@ meosd Mg
d th f string abo d is:
and the mass of string above the rod is FIG. P14.25
Tcos8 :
m=— Equation 1
i (Eq |

Now, consider the tension in the string. The light rod would rotate about point P if the string exerted
any vertical force on it. Therefore, recalling Newton's third law, the rod must exert only a horizontal
force on the string. Consider a free-body diagram of the string segment in contact with the end of
the rod.

Mg

~Tsin@—Mg=0=T=—2
Y F,=Tsing-Mg=0=>T=—=-"0

Then, from Equation 1, the mass of string above the rod is

(M8 \cos8 [ Mg
“\sinéJaf? | 4ftang |




T A4 T

©

= (0.002 m) sinf(z B&_Buau cos({1007 B&&a

y=2Asinkxcos et

e Nﬂ?. TS a0, A G SRS 10078 FE500HE
Then the distance between adjacent nodes is  dyy = .Mu 1.00 m
and on the string are n|nzﬂ = wlmmm =| 3 loops
For the speed we have v=fi= Amc )2 m=100 m/s
' Inthe simplest standing wave vibration, ___._fxn w.m..oo.m:l] Ap=600m

' 100
and oo 2 =67

Invy = QM , if the tension increases to T, = 9T, and the string does not stretch, the speed

“
increases to
v = ‘Se ;Lﬂ 30, =3(100 nys)=300 s
P 20w, =2 =300 m
Then = A.= e 600m . . dw=7
and E loop fits onto the string.

Section 14.5 Standing Waves in Air Columns

P1427 {3

B

For the fundamental mode in a closed pipe, A=4L,as
in the diagram.

But v=_f4, therefore L.=

o
343 m/ .
so. n%w ~[0357 mi]

For an open pipe, A=2L, as in the diagram.

A T e

FIG. P14.27

P14.28

*P14.29

P14.30

P14.31
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dap =0320 m; A=0640m

@ Tmn 531 Hz

) A=00850m; dy uE

Assuming an air temperature of T=37°C=310K, the speed of sound inside the pipe is
v=331 mfs+0.6 mys-C°(37°C)=353 m/s.

In the fundamental resonant mode, the wavelength of sound waves in a pipe closed at one end is
2 =4L. Thus, for the whooping crane

2=4(5.0 f)=20x10" £

v (353 mys) hm.mﬁ ft
a  f=2= 3B _remaiz].
and  f==0 00 AL Im u EZLE

The wavelength is A= ._n wMMm Mw\m =131m

s0 the length of the open pipe vibrating in its simplest (A-N-A) mode is

iron ~31-[085]

A closed pipe has (N-A) for its simplest resonance,
{IN-A-N-4) for the second,
and {(N-A-N-A-N-A) for the third.

Here, the pipe lengthis  5dyioa um l..,muﬂ 31 m)= l

For a closed box, the resonant frequencies will have nodes at both sides, 0 the permitted
wavelengths will be L= wsr (n=1,2,3,..).

ie., hn.@tﬁ d =2
2 2f 2L

Therefore, with L=0.860m and L'=210 m, the resonant frequencies are
£, =[ n(206 Hz) | for L=0.860 m for eachnfrom1to9

and f; =[ (845 Hz) j for L'=210m for each n from 2to 23.
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b t one end = Btz
i ow tube open a 4 T
fditory ¢anal, about 3 cm long, can vibrate with a node at the closed end and P14.37 mo.n resonance in a narr P ,
- sopenend; ) v
c =r—{n=1,3,5..) warm
w a f=n E...A v air 228 cmy
em=—
AR S, - - RO, - ﬂ”@&
¢ (2) Assuming n=1and n=3, 63 cm
3
v _ M3 mys 3B4=— Y — and Bi=——o—.
012m [3xez] 4(0.228) 4(0.683)
A small-amplitude external excitation at this frequency can, over time, feed energy In either case, v=] 350 m/s |. % I |
into a larger-amplitude resonance vibration of the air in the canal, making it audible. .
- 5v _5(350 nys) Y
= = =[114m|.
For both open and closed pipes, resonant frequencies are equally spaced as numbers. The set of ()  Forthe nextresonance n=5, and L af Awwp muJ I FIG. F14.37

resonant frequencies then must be 650 Hz, 550 Hz, 450 Hz, 350 Hz, 250 Hz, 150 Hz, 50 Hz. These are
Lol odd-integer multipliers of the fundamental frequency of | 50.0 Hz |. Then the pipe length is
A v 340 mps

i T Rl R

“P1438  (a) For the fundamental mode of an open tube,

~ A v 343 B\m = .
S
P14.34  The wavelength of sound is A=l
d ®  v=331 mys+06 nys°C(-5°C)= 528 mfs
i e 2y FT° ion of the metal
The distance between water levels at resonanceis d= m ~Rt=mrid= T; We ignore the thermal expansion o d
v_v _ 38w oy,
z AP A = l
and P i f A 2L 2(0195m) I
2Rf
A L ni The flute is flat by a semitone.
P14.35 7= dan=or L= forn=1,2,3,...
Since 1 uw L= Auch forn=1,2,3, ... Section 14.6 Beats: Interference in Time 5
e — _ mg . :
With =343 nys and f=e80Hz, P14.39 %Resa.ﬂ.ml. faew U.H._o“lma =104.4 Hz
Ln| 22105 | 0252 forn=1,2,3
" g0 gy | MOB2M) forn=125, .. Af =[5.64 beatsfs
———————--Possible lengths for resonance are: L=[-0.252-m,-0.504 0, 075710 rey 1#{0.252) T e - P1440 (3)  Thestringcould be tuned to either E from this evidence.
jginall
- . . . . § . d frequency. If the frequency were onginatly
i i =Zip=2- 38 Tightening the string raises the wave speed an
P14.36 - The length correspending to the fundamental satisfies f = L= m "W 0.167 m. ®) mum Hz, the beats would slow down.
i st have started at 525 Hz to become IE .
Since L 20.0 cm, the next two modes will be observed, corresponding to f = m and f= .M.m.. Tnstead, the frequency
e 25 p R

3

continued on next page




tanding Waves

*P14.43

,.m ‘ajp“mpwmup
-7 mzn @uﬁm& ﬁ uﬁmmmmnw T, =0.989T,.

The fractional change that should be made in the tension is then

. T -
fractional change ua_u,lqN =1-0.989.=0.011 4=114% lower.
1
The tension should be | reduced by 1.14% |.
F1441 Foranecho f’ u.w.?lc“v the beat frequency is f, =|f'- f|. - Com
| (v-1,) P14.44
frte, Solving for f,.
. o {2w) .
gives f, = f ﬂ@n when approaching wall.
_ 2(1.33)
(@) wnw = ﬁwwavallemv HE beat m—.mnuﬁgn%
(b) When he is moving away from the wall, v, changes sign. Solving for v, gives
__hv (5)(343)
[T LA, =
©2f-f, (2)(256)~5 (338 mjs
P14.45
Section 14.7 Nonsinusocidal Wave Patterns

Pl14.42  We evaluate

$=100sin§+1575in 26+ 62.9sin 39+ 105 sin 48
+51.9sin58+ 29.55in 66+ 25.35in 76

where s represents particle displacement in nanometers
and represents the phase of the wave in radians. As 8

mmﬁw..nmm by 2, time advances by (1/523) 5. Here is the
result;

L SO A A g

6 8"
Phase (rad)

FIG. P14.42
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We list the frequencies of the harmonics of each note in Hz:

Harmonic .
Note 1 2 3 4 5
A 440.00 880.00 1320.0 1760.0 22000
C# 554.37 11087 1663.1 22175 2771.9
E 659.26 13185 1977.8 2637.0 32963

The second harmonic of E is close Em the third harmonic of A, and the fourth
harmonic of C# is close to the fifth harmonic of A.

Section 14.8 Context Connection—Building on Antinodes

. _915m _
a)  Thewavespeedis V= s |E

(b) From the figure, there are antinodes at both ends of the pond, so the distance between

adjacent antinodes
. A
is m......uMuo.._m m,
and the wavelength is A=183 m
. v _ 366 m/s -
fr th = ={ 0200 H
The frequency is then PRI 0.200 Hz

We have assumed the wave speed is the same for all wavelengths.

v=gi=

The bay has one end open and one closed. Its simplest resonance is with a node of horizontal
velocity, which is also an antinode of vertical displacement, at the head of the bay and an antinode
of velocity, which is a node of displacement, at the mouth. The vibration of the water in the bay is
Jike that in one half of the pond shown in Figure P1444.

The wave speed is 980 m/ mpvﬁm.,._ m) =188 m/s

Then, dyga = 210%10% Bum
and A=840x10* m

s 1 A sxi0® -
Therefore, the period is Hnluﬂu Hmw B\,a._s =447x10% s= E

_ This agrees precisely with the period of the lunar mx%mznw_‘ so we identify the extra-high tides as

amplified by resonance.




anding Waves

e e ..:..:‘11l.tr.iil.ll.l.:\\ﬂ NQOﬂ._.-._. ———-—-
g =4 = =
NN &8 = m 1 500 cm
v _ 900 m/s
A 0100m
" The singer must match this frequency quite precisely fo
neray ko the glas to ek it Q n _u y for some interval of time to feed enough

..8» 100 emand f=— =9000 Hz={ .00 kHz |.

f=870Hz
speed of sound in air: v, =340 m/s:

—1 = 0400 m—

(O AT v £, = (8705 0400 m)

=[318ms]
. X L
A, =4l
o RTEL L we |
Aof 4 4fs70s7) 0.977 m -
FIG.P1447

FIG. P14.48

55x107 kg
(.86 m

130kg-mfst I
640107 kg/m =145 ms|
) Istatel, dy, =[080m =2
T o A=34m snlummmaalﬁmuE

In stat 1 =
ate I, dy, 3 (0.86 m}= Ic.mmq m
A=4(0.287 m)=1.15m L ol LA
PRI 124 Hz

continued on next page

@ u= =640x107 kg/m
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Instate I, dyy lIE 86 BT Q.GN m
p 143 mfs
=—= =] 207 H
I G Esad

P14.49 Moving away from station, frequency is depressed:

A

343
*=180-2.00=178 Hz: 178 =180
f 0 78 7 B —(-0)
. . (2.00)(343)
I =
Solving for v gives v 78

v u_ 385 mys away from station _

Moving toward the station, the frequency is enhanced:

Therefore,

*=180+200=182 Hz: 182=1
f=180+200=182 Hz 2= mompw..
- . (2.00)(343)
S fo =
olving for v gives 162

Therefore, =[377 mfs toward the station !

*P14,50  (a) Use the Doppler formula
. ket )
f=f {(vFo,)

With f{ = frequency of the speaker in front of student and
f3 = frequency of the speaker behind the student.

343 1
(343 m/s+150 m/s) 158 Hz
(343 mfs—0)
(243 B\ml._.mc mfs) - 454 Hz
(343 m/s+0)
Therefore, 5= f{~f3 HE.
2 34 s =0752 m. The standing wave

(b} The waves broadcast by both speakers have 4= 7 =~ E5s

i =(456 Hz)

i =(456 Hz)

between them has d 44 = W =0:376 m. The student walks from one maximum to the next in

time At = MMMMH ~0.251s, 50 the frequency at which she hears maxima s f == E




hnﬁatdx (- c!ﬁlaw: 1)(343 mys)

i 4515 mJ
and for the next resonance T? +c HU_ = B: +CI|.. ﬁ: * me.»m mys)
. 4f, A@G 05~ v

Thus, (22-1)(343 mys) _ 2+ 1)(343 nys)

4515 571) 460057
and we require an infeger solution to NMQMH = w|m__w.lmlu

N 1115 N .
The equation gives n= 7= 6.56, 50 the best fitdng integeris n=7.
Then L= mwﬁ.d :Ammw B\& =216m
4515 57)

2{7}+1

and H.u_. 7+ _ﬁwmm ys) =214 m

m?o.o me

suggest the best value for the depth of the well is [215m].

Ay =100 m; A= Ns??wéa,\.ﬁ

M3 mys
707 Hz

ea
»sularn 485 m

P1453 (a) Since the first node is at the weld, the wavelength in the thin wire is 2L or 80,0 cm. The
m—dm:m:nw and tension are the same in both sections, so

|:| T _ 460
f 2LY Naaimsxsa E

T T As the thick wire is twice the diameter, the linear density is 4 imes that of the thin wire.

=800 g/m
sor =2 1L rel L} 460 =[200 cm ] haif the length of the
2fVu (2)(59.9) [V 8.003 107
thin wire.

Chapter 14
. A 175m
P1454  The second standing wave mode of the air in the pipe reads ANAN, with dy, = i
© s0 A=233m ‘
v 343 m/s
=v—m———_=147Hz
ST 2B m
For the string, 4 and v are different but fis the same,
A de = 0.400 m
2 W7
so  A=0400m
T
v=JAf =(0.400 m)(147 Hz) =58.8 m/s= P
T’ =(9.00%107 kg/m)(58.8 mys)* =[31IN
P1455 (a) f= |J\|
F_L L_1
o 7o ﬁ. mw 2
The u frequency should be halved | to get the same number of antinodes for twice the
length.
n [T T (a2 [ n ﬁ
® 7 YT s ‘Hlﬁahu |T+H
T
The tension must be T'= _H|g T
Ln+l
b’ ,\1 T
@ T = T
T _(3Y T 9 . .
— == | to get bwice as many antinodes.
T T L T 16| O&° y
P1456 (a) For the block:
2L =T-Mgsin30.0°=
50 Hugw&ﬂmc.cqu. u
[
®) The length of the section of string paraliel to the incline is
m_.bh_c.co =2h. The total length of the string is then H FIG. P14.56
(c} The raass per unit length of the string is i u@

continued on next page
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A

between adjacent nodes is then dyy )

The frequency is _

the wavelength is

g

g @wu
m

efundamental mode, the segment of length-k vibrates as one-loop. The distance

r_1 ‘mﬁmml
A 2hY 2m

When the vertical segment of string vibrates with 2 loops (i.e., 3 nodes), then #

AMgh
2m

= =h, so the wavelengthis A =2h.

3Mg

8mh

)

3Mg

.@u,._.ou.ﬁ....ﬂuﬂw.ccx.._cbv\n s

(200%102

1)

P14.57  Welook for a solution of the form
5.005in(2.00x —10.0¢) + 10.000s(2.00x — 10.0£) = A sin(2.00x - 10.0¢ + )
= Asin(2.00x - 10.0t)cos ¢+ Acos(2.00x - 10.0¢) sin g
This will be true if both 500=Acos¢ and 10.0= Asing,
requiring (5.00)% +(10.0)% = A
A=112 and ¢=63.4°
The resultant wave _ 11.25in(2.00x — 10.0f + 63.4°) w is sinusoidal.
2
oo P1458  Forthe wire, u=2000KE 5 00%103 kg/m: p= \M = |~ )
200 Yz {suox10* Kg/m
=200 m/s
“ it vibrates in its simplest state, dygy =2.00 m= W" =2 Amcc :..\_& =500 Hz
2 A 400m ’

[E0] The tuning fork can rmmm frequencies . Nmm..c Hz 9.. mmo .I.N .

continted on next page

and
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% E: @) U f=450Hz, v=fA=(450/s)400 m=180 m/s. ©
m Then, T=2p=(180 mfs)’ Ambcxd.c.w kg Fd.u& 162 NJ
(o] £ =550 He, T=vse= = (555 (400 m’ (50010 k) -[22x}
Pi459  (a) Let @represent the angle each slanted rope P )
rmakes with the vertical.
In the diagram, observe that:
ing= 100m_2
M= s0m 3
b3
or §=418°.
Considering the mass, (@)
TR, =0: 2T cosé=mg FIG. P14.59
(12.0 kg)(9:80 m/s?)
or T os 18 -[#9N]
- T ﬁ 789N _
o) The speed of transverse waves in the string is v= gm =501 00 eg/m =281 myfs.
3
For the standing wave pattern shown (3 loops), = A
2(2.00 m
or A= A 3 vuﬁ.mwB
v _ 281 mfs
Thus, the required frequency is f =7" T3 wn“ =|211Hz
P14.60  dpy = W =705 10°% m is the distance between antinodes. Al N_|a
Then A=141x%107 m
v 370x10° mfs
and =2 =200 e[
A 141x107 m FIG. P14.60

The crystal can be tuned to vibrate at
derive from it a signal at precisely 1 Hz.

218 Hz, so that binary counters can

B\ NSWERS TO EVEN PROBLEMS

Pi4.2 see the solution .P14.6

Pl144 5.66 cmn P14.8

0500s

{2) 3.33 rad; (b) 283 Hz




157 m, 31.8 Hz, 500 my/s

- see the solution
{a) see the solution; (b} see the solution
(2) 0.600 m; (b) 30.0 Hz

(@) 350 Hy; () 400kg

(2) 495 Hz; (b) 950 Hz

31.2 cm from the bridge, 3.84%,

P1426 (a3 loops; (b) 16.7 Hz; () Tloop
- P1428  (a) 531 Hz; (b) 42.5 mm

P1430  0.656m, 1.64m

P14.32 m_dw.::.m 3 kHz, A small-amiplitude external
excitation at this frequency can, over time,
feed energy into a larger-amplitude
resonance vibration of the air in the canal,
making if audible.
zriy

Pi14.34

2Rf

Pi4.38

_Pids0

P14.42
P14.44
P14.46

P144s

P14.50
Pl4.52

P14.54

P14.56

P14.58

P14.60

* see the solution

0.502 m, 0.837 m

(2) 0.195 m; (b) 842 Hz

{2) 521 Hz 0or 525 Hz; (b) 526 Hz;
{c) reduced by 1.14%

{2) 3.66 mvs; (b) 0.200 Hz
9.00 kHz

(&) 14.3 my/s; {b) 0.860 m, 0.287 m,0.172 m;
(c) 414 Hz, 124 Hz, 207Hz

(a) 399 Hz; (b) 3.99 Hz

485m

311N
1

(@) Mg () 3h; (¢) 22 () /28",
2 Mg (b) 3k; (o) 3 Dy

Mg . [2mk
(e) wsr\S g‘.@@

®) AN.st.d_\.wﬁﬂm

() 45.0 or 55.0 Hz; {b) 162 or 242 N

2.62x10° Hz

e CCB L Lt point 1- ber=10 ki
1 C
o

continued on next page

. tront the epicenter and point 2 be at 20 km, The intensity is proportional fo
7 according to I =—, where Cis some constant. Intensi

ty is defined as the eNergy a wave carties

MMM“HGSQ wruosmw 2 unit area of wavefront, so it js proportional to the amplitude squared
. ngto I=DA%, where D is another constant. Then the factors of change are related by

CC3.2

CC33

Chapler 14 405

I, DA #C
I, DAZ 7C
A, n
4 yn

1
Ay =4y ‘H|ﬂ =50 nBA‘NMWE =|35cm
2 km

As in Equation 13.23, the rate of energy transfer in a seismic wave is proportional to the speed and to
the amplitude squared. We write 9 = FeA®, where F is some constant. If no wave energy is reflected
or turns into internal energy, Fry,goq Atedron = m.esanmumw_az_
2 2
Ymudfl ﬁhmw&a% w nﬁ Abegrock u _
Vhedrock 5 Apedrock

1
m-:EE_._ %

| The speed decreases by a factor of 25.]

METHOE ONE

From the graph, we have for the speed of § waves vg nl.lmmwcwmz

waves vp = A0 km _ 8.33 km/s. From the data of station 1 we can find a value for the time the

48s
quake started: 15 h:46 min:06 mllm'ooﬁuum h:45 min:66 s~ 24 5 =15 h:45 min:42 s. Similarly
8.33 kmys
160 km

fro! f the other stations, th ke b £ £5:46:01 - =15:45:41.8
m the data of the other stations, the quake began a 833 knys or

=3.95 km/s, and for the speed of P

15:45:54— Hmowwm =15:45:41.4. For the most probabie value for the actual ime we take the average,
15:45:41.7 ¢ w.w s.Then the S-wave arrival time should be

15:45:41.7 + 20 KR __ ey for sration ,
3.95 km/s
15:45:417+ 260 ={15:46:22 for station 2, _
517+ :46: ,

15:45:417 + H%wmm =[15:46:08 for station 3, |
all with uncertainties of E
METHOD TWO
With no significant loss of precision, we can use the graph of travel times to read the § wave arrival
times almost directly.

For station #1, locate 200 km on the horizontal axis. Vertically above it, read the size of the
space between the P and § lines as 27 5. Add this 5 wave delay time to the P wave arrival time,
15:46:06, to obtain 15:46:33 as the $ wave arrival time at station #1.

Similarly for station #2, the S wave should arrive at 21 s + 15:46:01 = 15:46:22,

For station #3, the graph shows that at range 105 ki an § wave arrives 14 s after a P wave,
placing it at 15:45:54 4 14 = 15:46:08.




