Polymers

Long string like molecules give rise to universal properties in dynamics as well as in structure – properties of importance when dealing with:

- •Pure polymers and polymer solutions & mixtures
- Composites (reinforced plastics)

•Biological macromolecules (DNA, Factin, cellulose, natural rubber etc.)

Hevea brasiilensis

Today's content

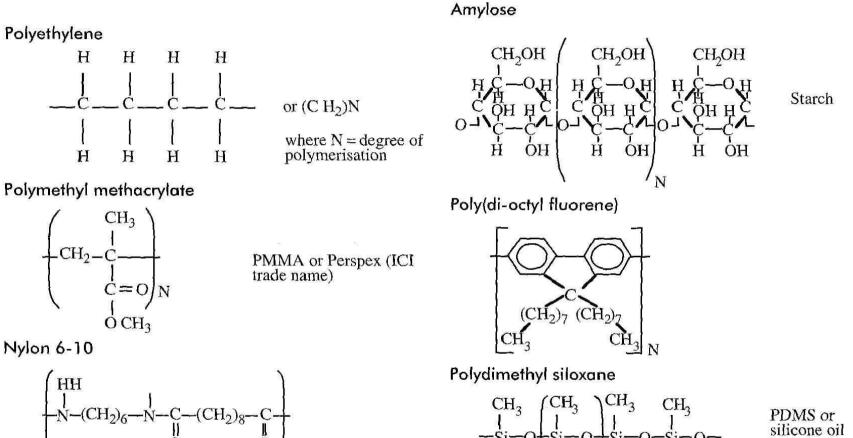
With simple models we will be able to:

- Define length-scales in polymers (rms end-to-end distance, radius of gyration, Kuhn length, etc).
- Describe dynamic properties (viscosity, rubber elasticity and reptation, etc).

Structure and Chemistry

- Polymers are giant molecules usually with carbons building the backbone – exceptions exist (poly dimethylsiloxane)
- Linear chains, branched chains, ladders, networks, dendrimers
- Homopolymers, copolymers, random copolymers, micro phase separated polymers (like amphiphilic polymers)

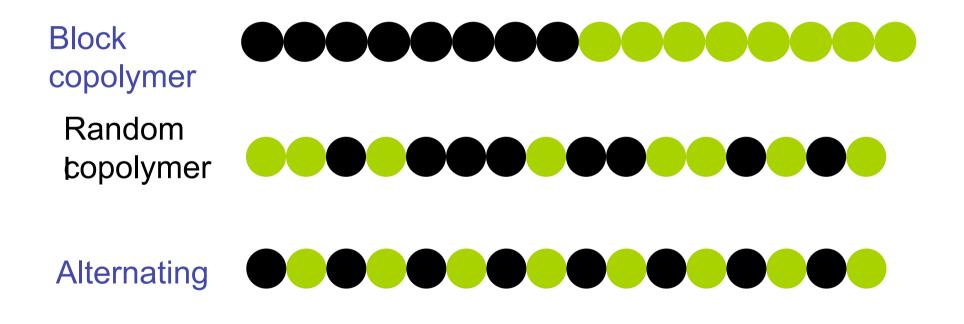
Some different polymers



N

silicone oil

In contrast to homo-polymers co-polymers are composed of more than one type of repeat unit



Repeat units with different properties => self assembly and micro phase separation. Chapter 9

Molecular weight and dispersion

Syntetic polymers always show a distribution in molecular weights. $\sum_{n \in M}$

weights. number average : $M_n = \frac{\sum n_i M_i}{\sum n_i}$ weight average: $M_w = \frac{\sum w_i M_i}{\sum w_i} = \frac{\sum n_i M_i M_i}{\sum n_i M_i}$

 $(n_i \text{ and } w_i \text{ are number and weight fractions, respectively, of molecules with molar mass M_i)$

The polydispersity index is given by M_w/M_n

Molecular weight and dispersion an example:

Here are:

10 chains of 100 molecular weight20 chains of 500 molecular weight40 chains of 1000 molecular weight5 chains of 10000 molecular weight

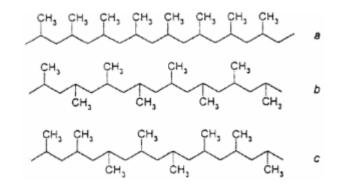
$$\overline{M}_{n} = \frac{(10 \cdot 100) + (20 \cdot 500) + (40 \cdot 1000) + (5 \cdot 10000)}{10 + 20 + 40 + 5} = 1347$$

$$\overline{M}_{w} = \frac{(10 \cdot 100^{2}) + (20 \cdot 500^{2}) + (40 \cdot 1000^{2}) + (5 \cdot 10000^{2})}{(10 \cdot 100) + (20 \cdot 500) + (40 \cdot 1000) + (5 \cdot 10000)} = 5390$$

Polydispersity =
$$\frac{\overline{M}_{w}}{\overline{M}_{n}} \approx 4$$

Stereochemistry

- Isotactic side groups on the same side of the chain (a)
- Syndiotactic alternating side groups (b)
- Atactic random arrangement of side groups (c)



Stereo isomers of poly propylene

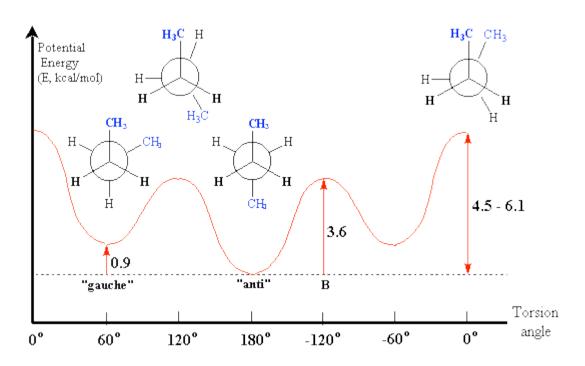
Tacticity determines ability to form crystals: Disordered, atactic polymers form glasses.

Rotational isomers

Newman projections of the C-C bond in the middle of butane.

Rotation about σ bonds is neither completely rigid nor completely free.

A polymer molecule with 10000 carbons have 39997 conformations



Potential energy of butane as a function of the torsion angle.

The energy barrier between gauche and trans is about 2.5 kJ/mol RT~8.31*300 J/mol~2.5 kJ/mol

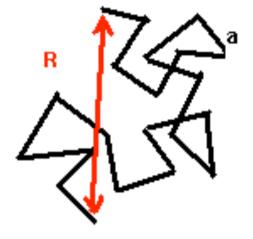
Random walks – a chain model

For a polymer chain model;

 Consider random steps of equal length, a, defined by chemical bonds

Complications:

- Excluded volume effects
- Steric limitations



The chain end-to-end vector R "describes" a coil made up of N jump vectors \mathbf{a}_{i} .

Random walk ...

$$\overline{\mathbf{R}} = \sum_{i=1}^{N} \overline{\mathbf{a}}_{i}$$

R is made up of N jump vectors \mathbf{a}_i . The average of all conformational states of the polymer is $\langle \mathbf{R} \rangle = 0$

 $\langle \overline{R}^2 \rangle = \langle \sum \overline{a}_i \bullet \overline{a}_j \rangle$ {The simplest non-zero average is the mean-square end to end distance <R²>

$$\left\langle \overline{R}^{2} \right\rangle = \underbrace{Na^{2}}_{i \neq j} + \left\langle \sum_{i \neq j} \overline{a}_{i} \bullet \overline{a}_{j} \right\rangle = \underbrace{Na^{2}}_{i \neq j} + 2a^{2} \sum_{i \neq j} \cos \theta_{ij}$$

(A matrix of dot-products where the \downarrow diagonal represents i=j and off axis elements i≠j)

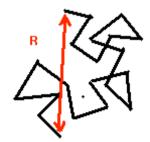
For a freely jointed chain the average of the cross terms above is zero and we recover a classical random walk: $\langle \mathbf{R}^2 \rangle = Na^2$

The rms end to end distance $\langle \mathbf{R}^2 \rangle^{1/2} = N^{1/2}a$

A size example:

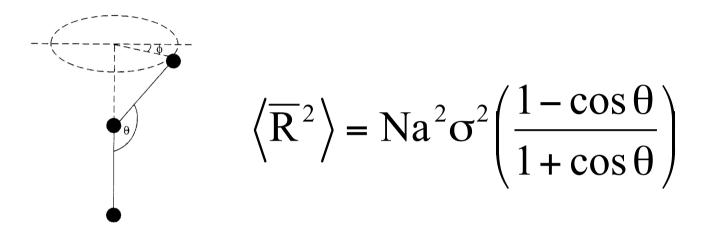
An ideal polymer chain with 10⁶ repeat units (not unusual), each unit about 6Å will have:

- a rms end-to-end distance R of 600 nm
- a contour length of 600 µm



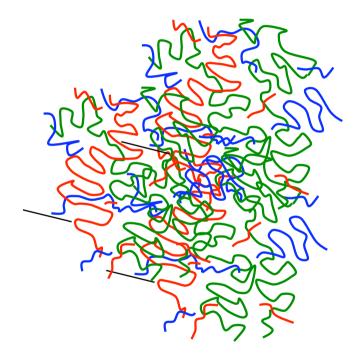
The rms end to end distance $< \mathbb{R}^2 > \frac{1}{2} = \mathbb{N}^{1/2}$

Real chains have steric limitations



- In freely rotating chains Φ can take any value; $\sigma^2=1$. Poly ethylene: $\Theta = 109.5^\circ \rightarrow \langle R^2 \rangle = 2Na^2$
- With hindered rotation σ^2 depends on the average of Φ . σ is experimentally determined.

Space filling?



The random walk and the steric limitations makes the polymer coils in a polymer melt or in a polymer glass "expanded".

However, the overlap between molecules ensure space filling

Gaussian distribution

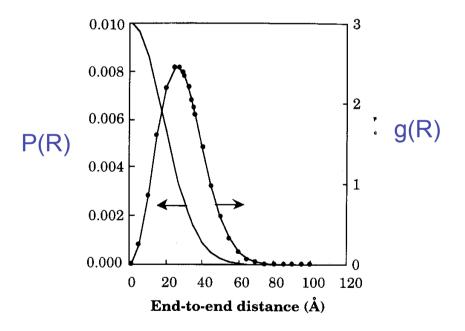
The distribution of end-to-end distances (R) in an ensemble of random polymer coils is Gaussian. The probability function is:

$$P(\overline{R}) = \left(\frac{2\pi Na^2}{3}\right)^{-3/2} \exp\left(\frac{-3\overline{R}^2}{2Na^2}\right)$$

The probability decreases monotonically with increasing R (one end is attached at origo). The radial distribution $g(\mathbf{R})$ is obtained by multiplying with $4\pi R^2$

$$g(\overline{R}) = 4\pi R^2 \left(\frac{2\pi Na^2}{3}\right)^{-3/2} \exp\left(\frac{-3\overline{R}^2}{2Na^2}\right)$$

The radial distribution function g(R)



Adopted from Gedde; Polymer Physics

Entropic Effects in a Gaussian Coil

From the Boltzmann equation $S=k_b \ln \Omega$ where Ω =statistical weight we have an expression for the entropy of a Gaussian coil: $\ln P(R) = \ln \Omega$;

$$S(\overline{R}) = -\frac{3k_b R^2}{2Na^2} + \text{const}$$

Entropy decreases with stretching (increasing order)

F=U-TS => The "Entropic Spring" with a spring constant: dF/dR=3k_bTR/Na²

OBS: dF/dR Increases with T, decreases with N – not like a traditional spring which depends on U!

Homework?

A classic home 'kissing rubber' experiment: When we stretch or unstretch a rubber band fast, What happens?

"Real" Polymer Chains

Recall that :
$$\langle \overline{R}^2 \rangle = Na^2 + 2a^2 \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \cos \theta_{ij}$$

The correlation between bond vectors "dies" with increasing separation:

$$\lim_{|i-j|\to\infty} \left\langle \cos\theta_{ij} \right\rangle = 0$$

Thus the sum over bond angles converges to a finite number and we have:

Flory Characteristic Ratio b=Kuhn segment

$$\langle R^2 \rangle \cong C_{\infty} Na^2 = N_F b^2; \Rightarrow C_{\infty} = \frac{N_F b^2}{Na^2}$$

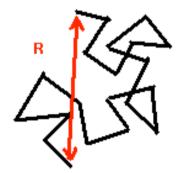
After renormalisation this relation holds for all flexible linear polymers! OBS: Jones uses an oversimplification; N_F=N... Valid only for ∞

Radius of Gyration of a Polymer Coil

The radius of gyration R_g is defined as the RMS distance of the collection of atoms from their common centre of gravity.

For a solid sphere of radius R;
$$I$$

$$R_g = \sqrt{\frac{2}{5}R} = 0.632R$$



For a polymer coil with rms end-to-end distance R ;

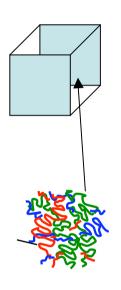
$$R_{g} = \frac{1}{6} \left\langle \overline{R}^{2} \right\rangle^{1/2} = \frac{a}{6} N^{1/2}$$

The excluded volume effect (in polymer solutions)

- Steric hindrance on short distances limits the number of conformations
- At longer distances we have a topological constraint – the self avoiding walk – or the excluded volume effect:

Instead of $\langle R^2 \rangle^{1/2} = aN^{1/2}$ we will have $\langle R^2 \rangle^{1/2} = aN^v$ where v>0.5 Experiments tells us that in general: v~0.6 Why?

Excluded volume according to Flory



F

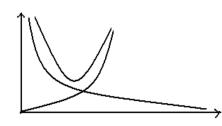
Consider a cube containing N segments of a polymer $V=r^3$ where r is the radius of gyration. The concentration of segments is $c\sim N/r^3$

Each segment with volume ν "stuffed" into the cube reduces the entropy with $-k_{b}\nu N/V = -k_{b}\nu N/r^{3}$ (for small x; ln(1-x)~-x)

The result is a positive contribution to F; $F_{rep} = k_b v T N^2 / r^3$ (expansion of the coil)

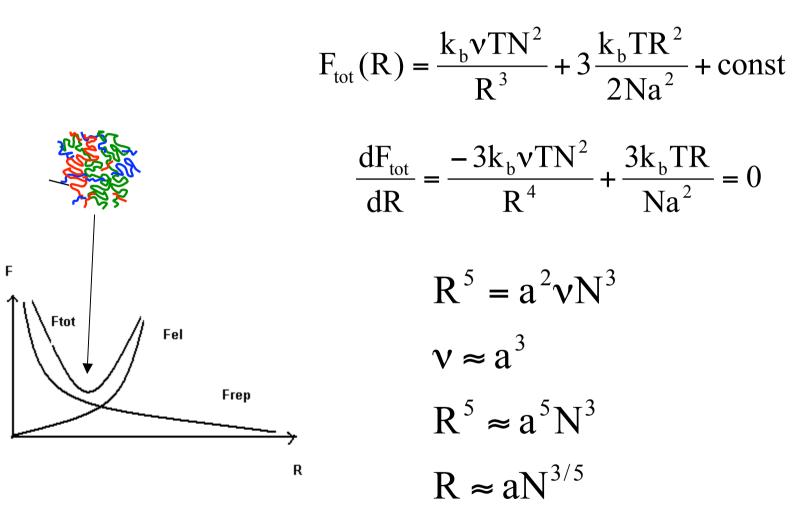
From before; Coiling reduces the entropy; $F_{el} = k_b T 3 R^2 / 2 N a$

The total free energy F is the sum of the two contributions!

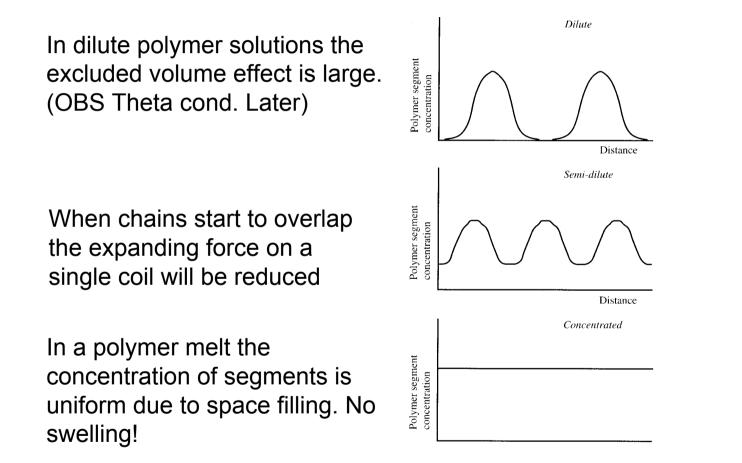


Search for equilibrium!

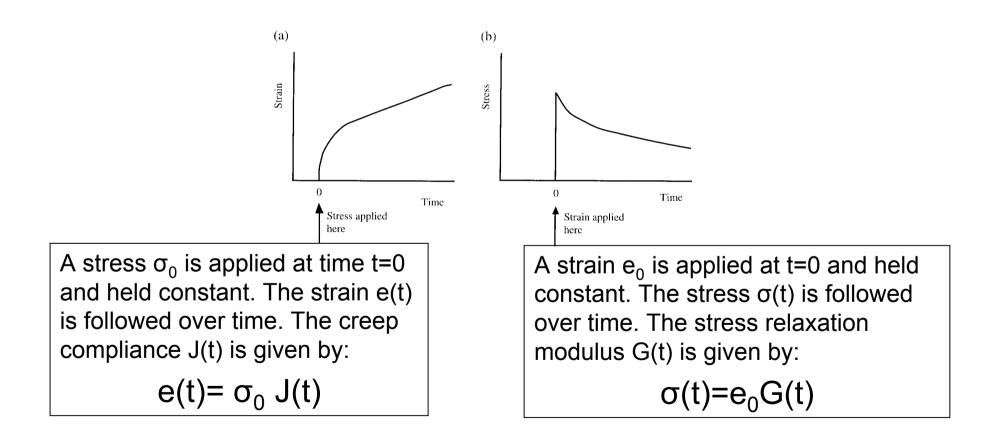
Flory's result for the swollen coil:



Polymer melts – a simpler case



Viscoelastic properties in polymers characteriscs



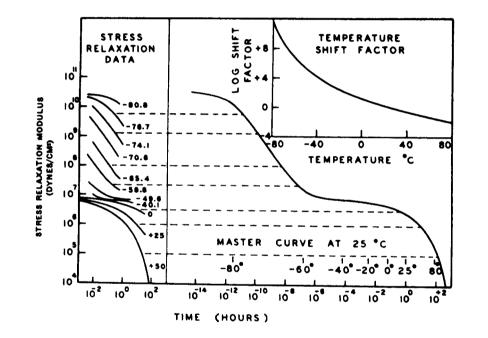
The complex modulus G*

If a sinusoidal strain is applied: $e(t)=e_0\cos(\omega t)$ the resulting stress is given by:

 $\sigma(t) = e_0[G'(\omega) \cos(\omega t) - G''(\omega) \sin(\omega t)]$ The complex modulus, $G^* = G'(\omega) + iG''(\omega)$ is given by a Fourier transform of G(t).

G' gives elastic response, G'' the viscous responce

Time-temperature superposition



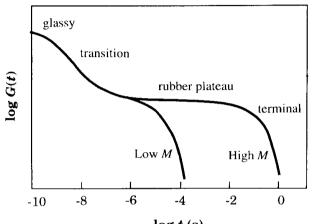
All relaxing modes in a polymer melt or a solution have the same Tdependence. Therefore:

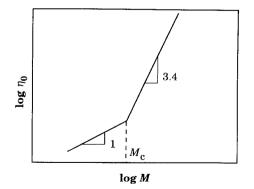
> $G(t,T) = G(a_T t, T_0)$ where $\log a_T = -[C_1(T-T_0)]/[C_2+T-T_0]$

"Quasi-universal" values of C_1 and C_2 are 17.4 and 51.6 K, respectively

The superposition principle help us building larger data set over timescales/temperatures otherwise out of reach

Viscoelasticity





The stress relaxation G(t) for two polymers (homologues) with different molecular weights.

At short time the curves are identical. At intermediate times we have a plateau with a constant modulus – the plateau modulus.

The plateau ends at a terminal time τ_T which depends strongly on molecular weights (N) according to a power law $\tau_T \sim N^m$ where the exponent m ≈ 3.4

Two Q's arises: 1) Why is $m \approx 3.4$ almost universal? 2) why do we have an almost purely elastic behaviour at the plateau?

Q1: The tube model and the idea of reptation

Every segment in the tube have a mobility, μ_{seg} restricted by the surrounding "resistance".

The tube with N segments have a mobility, $\mu_{tube} = \mu_{seg}/N$

Brownian motion within the tubes confinement – use Einstein relation to calculate a Diffusion coefficient =>

A polymer escapes from its own tube of length L after a time T_T

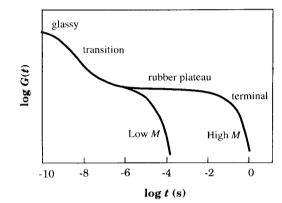
$$=> D_{tube} = k_b T \mu_{tube} = k_b T \mu_{seg} / N$$

$$\tau_T \cdot D_{tube} = L^2$$

$$\tau_T = \frac{L^2}{D_{tube}} \propto \frac{N^3}{const}$$

Close to the exp. results!

Q2; The rubber plateau and entanglements



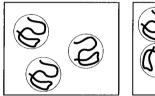
In a similar way as we explained the elastic behaviour at very short times for all simple liquids "as a glassy state" we can explain the rubber plateau in a qualitative way as a signature of entanglements.

It can be shown that in a rubber, a cross linked polymer (see Ch. 5.4), the elastic modulus depends on the average molecular mass between cross-links M_x , R ,T and the density ρ :

Adopting an identical relation and treating the entanglements as temporary cross-links with a lifetime of the order of T_T we can calculate an average mass of the molecular mass between the entanglements (M_e).

$$G = \frac{\rho RT}{M_x}$$

Sept 25th: More about solutions and some crystalline stuff...



Dilute solution $c \ll c^*$ Semi-dilute solution $c = c^*$

Con. solution c>c*

Remember Thursday Sept 13th at 08.00: *Glasses and glass transition*