
Polymers
Long string like molecules give rise to
universal properties in dynamics as well
as in structure – properties of importance
when dealing with:
•Pure polymers and polymer solutions &
mixtures
•Composites (reinforced plastics)
•Biological macromolecules (DNA, F-
actin, cellulose, natural rubber etc.)

Hevea brasiilensis 



Today's content

With simple models we will be able to:
• Define length-scales in polymers (rms

end-to-end distance, radius of gyration,
Kuhn length, etc).

• Describe dynamic properties (viscosity,
rubber elasticity and reptation, etc).



Structure and Chemistry
• Polymers are giant molecules usually with

carbons building the backbone –
exceptions exist (poly dimethylsiloxane)

• Linear chains, branched chains, ladders,
networks, dendrimers

• Homopolymers, copolymers, random
copolymers, micro phase separated
polymers (like amphiphilic polymers)



Some different polymers



Copolymers

In contrast to homo-polymers co-polymers are
composed of more than one type of repeat unit

Block
copolymer

Alternating

Random
copolymerl

Repeat units with different properties => self
assembly and micro phase separation. Chapter 9



Molecular weight and dispersion

Syntetic polymers always show a distribution in molecular
weights.

 number average :

weight average:

(ni and wi are number and weight fractions, respectively, of
molecules with molar mass Mi)

The polydispersity index is given by Mw /Mn
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Molecular weight and dispersion -
an example:

Here are:
10 chains of 100 molecular weight
20 chains of 500 molecular weight
40 chains of 1000 molecular weight
5 chains of 10000 molecular weight
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Stereochemistry
• Isotactic – side groups on the

same side of the chain (a)
• Syndiotactic – alternating side

groups (b)
• Atactic – random arrangement of

side groups (c)

Tacticity determines ability to form crystals: Disordered, atactic
polymers form glasses.

Stereo isomers of poly propylene



Rotational isomers

Newman projections of the
C-C bond in the middle of
butane.

Rotation about σ bonds is
neither completely rigid nor
completely free.

A polymer molecule with
10000 carbons have 39997

conformations

The energy barrier between gauche and trans is about 2.5 kJ/mol
RT~8.31*300 J/mol~2.5 kJ/mol



Random walks – a chain model
For a polymer chain model;
• Consider random steps of

equal length, a, defined
by chemical bonds

Complications:
• Excluded volume effects
• Steric limitations

The chain end-to-end vector R
“describes” a coil made up of N
jump vectors ai.



Random walk …
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R is made up of N jump vectors ai . The average of all
conformational states of the polymer is <R>=0

The simplest non-zero average is the mean-
square end to end distance <R2>
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For a freely jointed chain the average of the cross terms above is zero
and we recover a classical random walk: <R2>=Na2

The rms end to end distance <R2>1/2=N1/2a

(A matrix of dot-products where the
diagonal represents i=j and off axis
elements i≠ j)



A size example:

An ideal polymer chain with 106 repeat units
(not unusual), each unit about 6Å will
have:

•  a rms end-to-end distance R of 600 nm
•  a contour length of 600 µm

The rms end to end distance <R2>1/2=N1/2a



Real chains have steric limitations

• In freely rotating chains Φ can take any value;
σ2=1. Poly ethylene: Θ = 109.5° → <R2>=2Na2

• With hindered rotation σ2 depends on the
average of Φ. σ is experimentally determined.

!
"

#
$
%

&

'+

'(
)=

cos1

cos1
NaR

222



Space filling?

The random walk and the steric limitations
makes the polymer coils in a polymer melt
or in a polymer glass “expanded”.

However, the overlap between molecules
ensure space filling



Gaussian distribution
The distribution of end-to-end distances (R) in an ensemble

of random polymer coils is Gaussian. The probability
function is:

The probability decreases monotonically with increasing R
(one end is attached at origo). The radial distribution
g(R) is obtained by multiplying with 4πR2
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The radial distribution function g(R)

P(R) g(R)

Adopted from Gedde; Polymer Physics



Entropic Effects in a Gaussian Coil

From the Boltzmann equation S=kblnΩ where Ω=statistical weight we
have an expression for the entropy of a Gaussian coil: ln P(R) = ln Ω;

Entropy decreases with stretching (increasing order)

F=U-TS => The “Entropic Spring” with a spring constant:
dF/dR=3kbTR/Na2 

OBS: dF/dR Increases with T, decreases with N – not like a traditional
spring which depends on U!
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Homework?

   A classic home ‘kissing rubber’
experiment: When we stretch or unstretch
a rubber band fast, What happens?



“Real” Polymer Chains

Recall that :

The correlation between
bond vectors “dies” with
increasing separation:

Thus the sum over bond
angles converges to a
finite number and we
have:
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Flory Characteristic Ratio b=Kuhn segment

After renormalisation this relation holds for all flexible linear polymers!
OBS: Jones uses an oversimplification; NF=N… Valid only for ∞



Radius of Gyration of a Polymer Coil

The radius of gyration Rg is defined as the RMS
distance of the collection of atoms from their
common centre of gravity.

For a solid sphere of radius R; R632.0R
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For a polymer coil with rms end-to-end distance R ;
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The excluded volume effect
(in polymer solutions)

• Steric hindrance on short distances limits the
number of conformations

• At longer distances we have a topological
constraint – the self avoiding walk – or the
excluded volume effect:

Instead of <R2>1/2=aN1/2 we will have
<R2>1/2=aNν where v>0.5

Experiments tells us that in general:  v~0.6
Why?



Excluded volume according to Flory

Consider a cube containing N segments of a polymer
V=r3 where r is the radius of gyration.
The concentration of segments is c~N/r3

Each segment with volume ע “stuffed” into the cube reduces the
entropy with –kbעN/V = -kbעN/r3 (for small x; ln(1-x)~-x)

The result is a positive contribution to F; Frep= kbעTN2/r3

(expansion of the coil)

From before; Coiling reduces the entropy; Fel=kbT3R2/2Na

The total free energy F is the sum of the two contributions!

Search for equilibrium!
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Flory’s result for the swollen coil:



Polymer melts – a simpler case

In dilute polymer solutions the
excluded volume effect is large.
(OBS Theta cond. Later)

When chains start to overlap
the expanding force on a
single coil will be reduced

In a polymer melt the
concentration of segments is
uniform due to space filling. No
swelling!



Viscoelastic properties in polymers -
characteriscs

A stress σ0 is applied at time t=0
and held constant. The strain e(t)
is followed over time. The creep
compliance J(t) is given by:

e(t)= σ0 J(t)

A strain e0 is applied at t=0 and held
constant. The stress σ(t) is followed
over time. The stress relaxation
modulus G(t) is given by:

σ(t)=e0G(t)



The complex modulus G*

If a sinusoidal strain is applied: e(t)=e0cos(ωt)
the resulting stress is given by:

σ(t) = e0[G’(ω) cos(ωt) – G’’(ω) sin(ωt)]
The complex modulus, G*= G’(ω) + iG’’(ω)  is
given by a Fourier transform of G(t).

G’ gives elastic response, G’’ the viscous
responce



Time-temperature superposition

All relaxing modes in a polymer melt
or a solution have the same T-
dependence. Therefore:

G(t,T) = G(aTt, T0)
where

 log aT = -[C1(T-T0)]/[C2+T-T0]

“Quasi-universal” values of C1 and C2 are 17.4 and 51.6 K, respectively

The superposition principle help us building larger data set over
timescales/temperatures otherwise out of reach



Viscoelasticity
The stress relaxation G(t) for two polymers
(homologues) with different molecular weights.

At short time the curves are identical.
At intermediate times we have a plateau with a
constant modulus – the plateau modulus.

The plateau ends at a terminal time τT which
depends strongly on molecular weights (N)
according to a power law τT~Nm where the
exponent m ≈ 3.4

Two Q’s arises: 1) Why is m ≈ 3.4 almost
universal? 2) why do we have an almost
purely elastic behaviour at the plateau?



Q1: The tube model and the idea of
reptation

Every segment in the tube have a mobility, µseg
restricted by the surrounding “resistance”.

The tube with N segments have a mobilty, µtube= µseg/N

Brownian motion within the tubes confinement – use
Einstein relation to calculate a Diffusion coefficient =>

=> Dtube=kbT µtube=kbT µseg/NA polymer escapes from
its own tube of length L
after a time τT
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Close to the
exp. results!



Q2; The rubber plateau and entanglements

In a similar way as we explained the elastic
behaviour at very short times for all simple liquids
“as a glassy state” we can explain the rubber
plateau in a qualitative way as a signature of
entanglements.

It can be shown that in a rubber, a cross linked polymer
(see Ch. 5.4), the elastic modulus depends on the average
molecular mass between cross-links Mx, R ,T and the
density ρ:
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Adopting an identical relation and treating the
entanglements as temporary cross-links with a lifetime of
the order of τT we can calculate an average mass of the
molecular mass between the entanglements (Me).



Sept 25th: More about solutions and
some crystalline stuff…

Remember Thursday Sept 13th at 08.00:
Glasses and glass transition


