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Abstract

Understanding financial markets has always been a subject of interest for
economists as well as physicists and mathematicians. In recent years there has
been a lot of interest in agent-based models of the market as a tool to understand
market dynamics. Grand Canonical Minority Game (GCMG), a development of
the Minority Game proposed in 1997, is an agent-based model where the agents,
based on assigned strategies, choose one of two sides with the aim of choosing the
minority side with the additional option to not participate (as opposed to the basic
Minority Game). Such models have shown promise in regards to produce stylized
facts from real markets such as heavy tailed price returns as well as volatility clus-
tering around critical states.

In this thesis we first go through the basics of the Minority Game and show its
features, then we move on to describe GCMG. In this game we have identified
different kind of agents, which will be described in detail. The main part of the
work has been to formulate a statistical model for the game which characterize the
agents mean step size, with a step being how far an agent moves in a time step.
From this we have been able to calculate fractions of these different kind of agents
as well as the full score distribution of all agents. Our model qualitatively repro-
duces results from numerical simulations within a range of the reduced amount of
speculators in the market (ns ≤ 1). This represents a game with a large strategy
space compared to the amount of speculators.
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1 INTRODUCTION

1 Introduction

The interest for agent based models of the financial market has grown a lot re-
cently. Standard economic models have proved to be unable to anticipate financial
crisis and in light of this, alternative models are needed in order to get a better
understanding of the financial market.

One model that has been used in the hope of gaining better understanding of
the financial market is the Minority Game which takes its root in Brian Arthur’s
El Farol Bar Problem. The El Farol Bar Problem formulation is easy and can be
summarized as [1]:
”N people wants to go to the El Farol Bar on a certain night each week where they
have entertainment. However, if more than 60% of the people attend the bar, it
will be too crowded and it would have been preferable to stay at home.”
The people must make their choices, if they should attend the bar or not, indepen-
dent of each other. One of the interesting features of this problem is that there can
be no best strategy beforehand, because if there was everyone would use it and it
would not have been the best. The people thus needs to use inductive reasoning.
From this problem formulation Yi-Cheng Zhang and Damien Challet developed
the Minority Game in 1997 [2], which we will discuss in detail in the next chapter.

We start this project by going through some basic features of the Minority Game.
We then study the so called Grand Canonical Minority Game, which is a sim-
ple development of the Minority Game, to arrive at a statistical model for this
particular game.
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2 FROM EL FAROL TO THE MINORITY GAME

2 From El Farol to The Minority Game

In economics agents are thought of to have perfect rationality, this being that
agents are equipped with a rational mind with infinite capacity to understand
everything. Brian Arthur thought of the El Farol Bar Problem because he did
not like this premise, instead he was interested in a problem where the rational-
ity of the agents was bounded. The El Farol Bar Problem was thought as a way
of thinking about inductive reasoning and its modeling [1][3]. Since the agents
do not know each others choices they can not come up with a deductive solution
to the problem. Hence the agents will have to utilize inductive reasoning. The
expectations of the agents have to differ, they can not all be thinking the same way.

In the El Farol problem it was unspecified how the agents would predict whether
or not to attend the bar. That is one of the things that becomes clearer in the Mi-
nority Game, as mentioned proposed by Challet and Zhang in 1997. The Minority
Game is a game where agents compete over a scarce resource and reward those in
minority while punish those in majority. The Minority Game has inspired a lot of
research because of its interesting features. This chapter will describe the game
and some its basic features.

2.1 Basics of the game

The Minority Game is an agent based model where an odd number, N , agents are
choosing between two options, say 1 and -1 (think of it as buy and sell), with the
aim of choosing the minority group. The agents make their decision based on a
strategy. The strategy predicts the next winning bid given the last m number of
previous winning bids. This information is called the history, µ. This suggests the
size of the history space is P = 2m. The agents that choose the minority group
get rewarded whereas the agents in majority get punished. At the start of the
game the agents are randomly assigned s strategies and in each time step they will
use the strategy that has historically performed the best. If there is a tie between
strategies it is either resolved by a coin-toss or alternatively one can predefine the
choice of strategy in case of a tie.

What we have is an odd number of agents, N , who all have memory of the winning
bid from the last m time steps. The agents strategies then predicts the winning
bid for the next time step given any of these histories, a strategy when m = 2 can
be seen in table 1.
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2.2 Statistical properties 2 FROM EL FAROL TO THE MINORITY GAME

History µ Bid

-1 -1 1

-1 1 -1

1 -1 -1

1 1 -1

Table 1: An example of a strategy for m = 2.

This implies the complete strategy space is made up of a total of 22m distinctly
different strategies. Each agent is randomly assigned strategies from the strategy
space in the initiation of the game. The number of different strategies, s, each
agent are assigned is up for choice. However, as s = 1 renders a game where the
agents cannot learn and adapt, one usually considers s = 2. The agents respective
strategy is assigned a score, U , which will be updated after every time step. At
the start of the game the score for each strategy is 0. An example of an updating
scheme for the strategy score of agent i is

Ui,s(t+ 1) = Ui,s(t)− sign(A(t))a
µ(t)
i,s (1)

where a
µ(t)
i,s is the i’ths agent’s choice, which is either 1 or -1, given the history

µ(t) at time t and s signifies which strategy is being updated. A(t) is called the
attendance and is defined as

A(t) =
N∑
i=1

a
µ(t)
i,si(t)

(2)

where si(t) is the i’ths agents best scored strategy at the particular time t. This
implies the attendance is the combined bid of the agents. This particular update
scheme is a sign payoff which gives the strategies that predicted the minority bid
+1 and the other strategies -1. Note that every strategy gets a score update in
every time step, including those which were not used. Another frequently used
payoff scheme is the linear payoff which updates the score linearly to the atten-
dance. We note that with either of these schemes the game is a negative sum
game, that is the total score will always get lower, considering that more agents
will be in majority than minority each time step.

2.2 Statistical properties

In the initiation of the game we randomize the agents strategies. This indicates
that we can treat a

µ(t)
i as a random variable with equal probability of being 1 as

3



2.3 Controlling parameter 2 FROM EL FAROL TO THE MINORITY GAME

-1 and we have 〈A(t)〉 = 0. Thus this quantity does not really tell us much of
the game. The variance of A(t) is a more interesting quantity since it gives us
information of how effective the game (or market) is, how volatile it is if one will.

The variance is calculated as σ2 = 〈A(t)2〉− 〈A(t)〉2 = 〈A(t)2〉 = E[(
N∑
i=1

a
µ(t)
i,si(t)

)2] =∑N
i=1E[(a

µ(t)
i,si(t)

)2] = N whereas the volatility is defined as σ2/N . Since the variance

is calculated treating the agents choices as uniformly random variables, σ2 = N
corresponds to a market where agents are acting randomly and if we have lower
variance the market is thus more effective than agents picking randomly.

2.3 Controlling parameter

Previous studies of the game has shown that the parameter α = 2m/N controls the
game, in the sense that it controls the volatility [4]. In Figure 1, we see α plotted
against σ2/N . As we see, there is a phase transition between two regimes. The
exact value of the phase transition has been found to be αc ≈ 0.34 in the case of
s = 2 [5]. When there is a high amount of agents compared to distinct strategies,
we get crowd effects which leads to higher variance. Crowd effects simply being
that since we have such a small strategy space the agents strategies will be fairly
correlated leading to agents being grouped together.

As m grows, or N gets smaller, the variance lowers until the transition and then
gradually rises until it reaches σ2/N = 1 which is the so called coin-toss limit. In
the coin-toss limit agents are essentially acting randomly on the market, having
no correlation between their respective strategies. Around the phase transition
we have a variance considerably lower which means the agents apparently makes
informed decisions. One thing that has been studied quite extensively are models
in which one let the agents learn along the way in order to get a market as effective
as possible [6][7]. Learn in this context might be to be able to update their poor
strategies from the best performing neighbour or something along that line. This
could be interesting in applications since it would represent a stable market.
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2.4 Predictability 2 FROM EL FAROL TO THE MINORITY GAME

Figure 1: Here we can see the phase transition. For small α we have a large
volatility whereas for larger values we get close to the coin-toss limit. Every point
is averaged over 5 runs of 104 time steps.

2.4 Predictability

A reasonable question to ask oneself in light of these findings is how the agents
around the phase transitions can make these informed choices. The answer to this
questions is that there is a predictability in the game during this phase. We can see
in Figures 2 and 3 the conditional probability of finding the agents to bid 1 given
a history µ, P(1|µ). We see that for small α we have no predictability whereas for
higher values of α we have that the histories vary in probability and hence there
is a predictability that the agents can use which results in lower variation of the
attendance. Thus, the different phases in the game are usually referred to as the
’unpredictable phase’ and the ’predictable phase’. Another way of looking at it is
saying the phase over the vertical line in Figure 1 is the worse than random phase
whereas under is the better then random phase. Drawing the parallel to the real
market, the better than random phase is how we would prefer our market to be.
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2.4 Predictability 2 FROM EL FAROL TO THE MINORITY GAME

Figure 2: Histogram of conditional probability of choosing the bid 1 given a specific
history for α = 25

501 < αc.

Figure 3: Histogram of conditional probability of choosing the bid 1 given a specific
history for α = 25

51 > αc.
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3 GRAND CANONICAL MINORITY GAME

3 Grand Canonical Minority Game

The Minority Game obviously has some major deficiencies as a market model. For
starters it assumes the agents will always participate on the market regardless of
how well their strategies are performing. Also, it does not show a fat tailed price
return but has Gaussian fluctuations. For this purpose The Minority Game has
been expanded upon in different ways, one of them being the so called Grand
Canonical Minority Game which we will study in some detail in this chapter [8].

3.1 Description of the game

The Grand Canonical Minority Game is a development of the basic Minority Game
with the aim of making it more like a real market. In this model the agents can
opt not to participate in the game if their strategies have not been performing well
enough. This additional option for the agents gives rise to fluctuating volumes on
the market. It is also how the version of the game has gotten its name: in the
grand canonical ensemble in statistical mechanics the number of particles varies in
the observed system.

In our work the option not to participate is thought of as the second strategy
which means the agents are only equipped with one regular strategy. To build on
this further we introduce an external cost, ε, in the score updates for the regular
strategy. This cost can be seen as what would have happened with the agent’s
money if the agent opted to put his money in a bank account with steady interest
rate. This is equivalent with giving the agent an inactive strategy which get to
have the score εt after t time steps. In addition we add producers to the model
who must participate all the time and they are only equipped with one strategy
each. This version of the game preserves some of the major feature from the basic
game, most importantly the two phased nature with an unpredictable respective
a predictable phase [9].

In the Grand Canonical Minority Game we use linear payoff in the update scheme.
The score update U(t+1) for an agents strategy for the Grand Canonical Minority
Game will thus be

Ui(t+ 1) = Ui(t)− ε− aµ(t)
i A(t) (3)

for some ε > 0 and A(t) as

A(t) = Ωµ(t) + ΣNs
i a

µ(t)
i φi(t) (4)

7



3.2 Producers 3 GRAND CANONICAL MINORITY GAME

where Ωµ is the net contribution from the producers for the history µ and φi(t)
is 0 or 1 depending on whether the agents participates or not at time t. In this
version of the game we call the number of agents Ns and will sometimes refer to
them as speculators. To determine whether or not an agent should participate we
have the following rule

φi(t) =

{
1 : Ui(t) ≥ 0

0 : Ui(t) < 0

Again we update the scores for every agents, including those that are inactive. This
model clearly poses a problem in the way we defined the history in the previous
game seeing as there will not necessarily be a winning bid in every time step. This
causes issues in the simulation since the agents should base their decisions on the
m last time steps winning bid. However, it turns out that the game qualitatively
remains intact with the use of a randomized history in each time step [10][11]. The
main features of the game remains intact. Most crucial is that all agents react to
the same event, rather than that event being what actually happened. We will use
this in our work. Another way of solving this problem would be to simply toss a
coin in the event of a non-winning bid.

3.2 Producers

The reason producers are added to the model is because otherwise we would find
ourselves in a situation without any active agents after a while [12]. The producers
have strategies, much like the agents themselves, that they follow. If we have Np

producers we have

Ωµ =

Np∑
i=1

aµi (5)

as their total contribution. Since Ωµ is a sum of Np uniformly distributed variables
with values of either 1 or -1 its mean is obviously 〈Ωµ〉 = 0. The variance is, just
as for the attendance in the Minority Game, 〈(Ωµ)2〉 = Np. Thus, for large P by

the Central Limit Theorem, Ωµ ∼ N (0,Np). The vector ~Ω = (Ω1,Ω2,...,ΩP ) for
µ = 1,2,...,P is a vector with P elements all being in the range [-Np,Np], where
only every second value is attainable. We see this from Equation 5, where if one
agent that bid 1 changes to -1 the change will be two steps and every value cannot
be attained. The event µ that causes the largest absolute net contribution from
the producers will be referred to as extreme event and the corresponding time step
is called critical.
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3.3 Behaviour for different m

One interesting feature of this game is the behaviour we get when simulations
are made with a fairly small strategy space, especially if one manually create the
vector of the producers. What we do when manually creating the vector is simply
making sure that there is a rather large extreme event. We see a typical run of the
game done in that way in Figure 4, where we see the evolution of strategy scores in
time. First we note the chaotic first phase where there are very large fluctuations.
After a while, however, we note that the agents divide into two distinctly differ-
ent groups: one that harbour around zero and one that goes down continuously.
This is an important feature of the game in this regime: the agents that are anti
correlated against the producers extreme event (which is the history that has the
combined biggest contribution of the producers) will harbour around zero points
whereas the agents correlated to that event will continue downward. Correlation
to an event is simply making the same bid as the sign of the combined contribution
of the producers.

Another interesting feature is the peaks, or ’booms’ as they would be called on
an actual market, that appear in the simulation. We can see they happen fairly
regularly and seem to fizzle out fast when they do. This is an effect of the small
strategy space: we will have a fair few agents answering the same to quite a few
histories. This, again, is crowd effects, much like those we saw in previous section.
The time step where the peak fizzles out is a critical time step where all the agents
participating in the game are anti correlated to the producers combined contribu-
tion, and they will tip the attendance over to the other sign making them all to
end up with the non-winning bid. These effects, however, seems to only appear
in simulations of the model with small strategy space which is reasonable consid-
ering the correlation between agents bids and the producers will lessen as P grows.

9



3.3 Behaviour for different m 3 GRAND CANONICAL MINORITY GAME

Figure 4: Here we can see a realization of the game for m = 4 and N = 20P . We
can clearly see the strategies dividing in two distinct groups. We also note spikes in
strategy scores which happens fairly regularly.

For larger values of m these effects disappear. A typical run of the game can
instead look like in Figure 5. The initial phase is not as obvious here as it was
for smaller m. The length of this phase is governed by how many agents we have
compared to P as well as how large ε is. We see that the strategies divide and
as expected more tends to go downward than upward. This choice of parameters
might not seem as interesting on the surface as the one above but nevertheless our
analysis of the game will be in this regime. One of the reasons for this is that it will
reflect a market where agents acts more independently from each other. Looking
at Figure 5 again we see that the agents might be classified into different groups
as discussed further in the next section.

10



3.4 Different types of agents 3 GRAND CANONICAL MINORITY GAME

Figure 5: Here we can see a realization of the game for m = 8 and Ns = P . We see
that we do not have the same effects as above. We note that the strategies generally
seem to loose points.

3.4 Different types of agents

As touched upon, in simulations of this model we have detected that different kind
of agents appear. In essence we have three types of agents that can be put into
three distinct groups

• Negatively frozen agents. These agents will never take part in the game,
which simply means their strategy never is prosperous enough.

• Positively frozen agents. These will be the agents that takes part in the game
at all time steps.

• Fickle agents. The fickle agents are those that takes part in the game on
occasion. This means that their strategy score will harbour around zero,
having tops over and dips under.

11



3.4 Different types of agents 3 GRAND CANONICAL MINORITY GAME

We can see typical behaviour of such agents in Figure 6. We note that after a short
initial phase they behave as we expect them to. To clarify a bit how we differenti-
ate the different types of agents in numerical simulations we say that after a long
time t (for example t ≈ 106) we expect initial disturbances to have vanished and
thus the agents to behave as described above. If we define mi as the fraction of
time steps agent i participates in the game, we expect that mi → 0 for negatively
frozen agents and mi → 1 for positively frozen agents as t→∞.

Since we will have fickle agents in the game the amount of active agents will
fluctuate. This means that an interesting quantity to study is the amount of ac-

tive agents, which is defined as Nact(t) =
Ns∑
i=1

φi(t). Much like the basic Minority

Game will the average attendance of this game be 0. The variance, however, is
again more interesting. If we calculate this a little naively, the variance takes the
form σ2(t) = Np + Nact(t). This is what it would look like if the bids of the spec-
ulators were uncorrelated to those of the producers. However in the development
of our model we will see that the bids of the active agents are in fact, on average,
anti correlated to the combined contribution of the producers leading to a smaller
variance.

12



3.5 Reduced parameters 3 GRAND CANONICAL MINORITY GAME

Figure 6: Here we have taken out the three agents with different characteristics
from the above simulation. We see that after a time, the yellow agent is always
active (score over zero), the blue one are occasionally active (score around zero) and
the red one is never active (score under zero).

3.5 Reduced parameters

Analyzing these kind of problems in statistical mechanics, one are often interested
in finding the solution in the thermodynamic limit. The thermodynamic limit, in
this problem, is when we let P → ∞ whereas we keep the reduced parameters
ns = Ns

P
and np = Np

P
constant. This means that for our statistical analysis of

the game we will be interested in the parameters ns and np instead of the actual
amount of agents and producers. Considering we do not have infinite computer
resources, we will study the game for moderately large values of m, but will not
exceed m = 10. However, we remember that it is equivalent to 2210

distinct
strategies, which means we have a very large strategy space.

13
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3.6 Stylized facts of the model

One of the reasons why this model is interesting to study is that it reproduces
some ’stylized facts’ from the real market. Stylized facts are something that has
been observed empirically so many times that it is accepted as truths. The stylized
facts that the model reproduces include a fat tailed price return as well as volatility
clustering [9]. Volatility clustering, for example, can easily be seen in figure 4
around the ’booms’. Generally we get these kinds of fat tails for smaller systems,
as the analysis of Challet and Marsili shows [13]. The study of such models is a tool
to understand how macroscopic effects are caused by the microscopic dynamics of
each agent [3]. However the regime we will be looking at will not show these fat
tailed price return but rather a normal return.

3.7 Analytical Model

The fact that we, as we mentioned earlier, use randomized histories turns out to
simplify an analytical approach. Otherwise the explicit time feedback induced by
the memory would have made the system non-Markovian and thus an analytical
approach would have been much harder. However with randomized histories we
bypass this problem as the agents now react to noise in each time step and we
arrive at a stochastic and Markovian problem [14].

In our analytical study of the game we are primarily interested in studying and

finding the agents mean step length 1
P

P∑
µ=1

〈∆i(t)〉, which is to say step length aver-

aged both in time and over the different histories. Here we define the step length
as ∆i(t) = Ui(t) − Ui(t − 1). We will denote time averages as 〈· · · 〉 and in the
continuum limit history averages as (· · · ). We find a distribution for mean step
sizes from which we can add the negative bias induced by active agents using their
strategy. The negative bias arise from Equation 3 and 4, where active agents will
self-interact with themselves. Positively frozen agents will be those that are able
to on average overcome the bias of using their strategy in each time step whereas
fickle are those that when active can not overcome their own bias. Proceeding,
with these individual averaged step sizes we will be able to find the score dis-
tributions of the different types of agents by solving the master equation on an
integer chain. From the master equation we get Pi(x, t) - the probability to find
agent i with score x at the time t. Since simulations are done over many agents
it is of interest to find the full score distribution P (x, t) =

∫
P (∆i)Pi(x, t)d∆i.

Further, the model also makes it possible to quantify the anti correlation of the
active agents choices of bids towards the producers. The main feature, however,
is that we are able to calculate the fractions of the different types of agents in

14



3.7 Analytical Model 3 GRAND CANONICAL MINORITY GAME

the game for different values of ns and np. The model will then be compared to
numerical simulations where we numerically calculate fractions as well as the full
score distribution.

15



4 STATISTICAL MODEL

4 Statistical Model

In this section we will derive a statistical model for the Grand Canonical Minority
Game in the regime ns ≤ 1. With the model we will be able to get fractions of
different types of agents as well as performing a random walk on an integer chain
to find the full score distribution.

4.1 Distribution of mean step sizes

In this section we derive the distribution for the mean step size of the agents as
well as expressions for fractions of different types of agents. Some of the analytic
calculations will be left out of this part and will be presented in Appendix A in
more detail.

We start by repeating some basics from earlier sections. From the update scheme
in Equation 3, we define the step length as ∆i(t) = Ui(t)− Ui(t− 1). This means
the step length ∆ for a particular agent i at the time t is written as

∆i(t) = −aµi (Ωµ +
N∑
i=1

φi(t)a
µ
i )− ε

We want to proceed to find the time and history averaged step sizes for each
agent. The first step in doing this is by removing the time-dependence of this
quantity. Hence we start by taking the time average of ∆i(t) which means we get
an expression that only depends on the history µ and arrive at

∆µ
i = −aµi (Ωµ +

N∑
i=1

mia
µ
i )− ε

where mi = 1
T

T∑
t=1

φi(t) is the the average amount of times an agent participates

in the game. Obviously 0 ≤ mi ≤ 1. As discussed previously we have different
type of active agents: the positively frozen agents which will be modeled as to have
mi = 1 and fickle agents where 0 < mi < 1. In order to arrive at expressions for the
mean step length we need to make a number of approximations and assumptions.
We start by making this simple assumption: the fickle and frozen agents will be
modeled to be drawn from different distributions. This means we can write the
step length by separating between these agents

∆µ
i = −aµi (Ωµ +

f+N∑
i=1

aµi +

kf0N∑
j=1

aµj )− ε

16



4.1 Distribution of mean step sizes 4 STATISTICAL MODEL

where f+ the fraction positively frozen agents, f 0 is the fraction fickle agents and
k is the fraction active fickle agents on average. What we have done here is simply
assume that the choices aµi will be drawn from different distributions for fickle re-
spective frozen agents. We also realize that since all active fickle agents are drawn
from the same distribution we can sum their mi together into kf 0N .

From now on we call the sum of the contributions for the positively frozen agents

Xµ =
f+N∑
i=1

aµi and the corresponding sum for fickle agents Y µ =
kf0N∑
j=1

aµj . We are

interested to find the distribution of these two objects, and more specifically their
dependence on Ωµ. To do this we proceed by making an additional assumption: if
we look at the joint distribution aµΩµ, we assume that the positively frozen agents
to be at the left hand side of this distribution. This means we expect these agents
to be the most anti correlated to the net contribution of the producers. In the
same way we will assume the negatively frozen agents will be on the right hand
side of this distribution. We also assume these objects to be independent.

We will also drop the index i on all these objects and instead consider these
variables to be drawn from different distributions. To do this we need to represent
these objects with probability distributions. If we look at aµ, this is a quantity
that will only take the value 1 or -1 for individual agents, however, for large P ,
we will assume this distribution, over all agents, to be normal with mean 0 and
variance 1 (this because the variable aµi has mean 0 and variance 1). As previously
mentioned Ωµ will be normal with mean 0 and variance Np. This implies the joint
object aµΩµ will have mean 0 and variance Np. Furthermore, if we look at the
object

P∑
µ=1

aµΩµ = ~a · ~Ω

it will be the sum of P independent such random variables which implies it will be
normal with mean 0 and variance NpP . From this distribution we will now be able
to find the positively frozen agents according to our previous assumption. Our
reasoning is this, since we expect our agents to be on the left hand side there will
exist a c such that ~a · ~Ω < -c for all positively frozen ~a. This means can calculate
f+ to be

f+ =

−c∫
−∞

Nx(0, NpP ) dx =
1

2
erfc

(
c√

2NpP

)
(6)
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4.1 Distribution of mean step sizes 4 STATISTICAL MODEL

where x = ~a · ~Ω and Nx(µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2 . In the same manner we can
calculate the fraction of negatively frozen agents for some other constant d to be

f− =

∞∫
d

Nx(0, NpP ) dx =
1

2
+

1

2
erf

(
d√

2NpP

)

The fraction fickle agents are then calculated from these two to be f 0 = 1−f+−f−.
Further, as previously mentioned, we are interested to find a measure of the anti
correlation of aµ in relation to Ωµ for the different types of agents. Since we
assumed the positively frozen agents to be anti correlated with Ωµ we will have

Paµ = Naµ(µ1, 1)

for some µ1 for positively frozen agents. We assume that this µ1 is linearly depen-
dent on Ωµ, that is µ1 = −g+Ωµ for some g+. To find this g+ we proceed to take
the conditional average of positively frozen agents over ~a · ~Ω.

(~a · ~Ω)f+ =
1

f+

−c∫
−∞

xNx(0, NpP ) dx = − 1

f+

√
NpP

2π
e
− −c

2

2NpP

We then calculate the same conditional mean in a different way

(~a · ~Ω)f+ = P (aµΩµ) = P

∫
aµΩµP(a|Ω)P(Ω) da dΩ = −Pg+Np

With these two equations we can solve for g+. In the same manner we assume that
the mean for fickle agents are linearly dependent and we can solve for fickle agents
to attain their anti correlation constant g0 to the producers. We thus arrive at

P(Xµ|Ωµ) = N (-g+Ωµ, f+N), P(Y µ|Ωµ) = N (-g0Ωµ, kf 0N)

with g+ = 1
f+

√
1

2πNpP
e
− −c

2

2NpP and g0 = 1
f0

√
1

2πNpP
(e
− −c

2

2NpP − e−
−d2

2NpP ).

Moving forward we want to find the history averaged step length, 1
P

∑
µ

∆µ. To

do this we repeat that we will have a uniform history distribution because we are
randomizing the histories. In our expression for ∆µ we also insert a bias term
explicitly according to

∆µ = −aµ(Ωµ +Xµ + Y µ)− θ(x)− ε, θ(x) =

{
1 : x ≥ 0

0 : x < 0

18



4.1 Distribution of mean step sizes 4 STATISTICAL MODEL

Since the bias term, θ(x), is history independent we have that µbias = 1
P

P∑
µ=1

θ(x) =

θ(x) and its variance will be σ2
bias = 1

P

P∑
µ=1

θ(x)2 − θ(x)2 = 0. We thus turn our

attention to the first part of this expression which we call δµ (δµ = −aµ(Ωµ +
Xµ +Y µ)). This object will determine the agents mean step size distribution. For
large P we assume independence between distributions and we thus easily attain

1
P

P∑
µ=1

δµ = 0 (since aµ is a zero-mean variable). The variance for δµ is calculated

through

σ2
δ =

1

P

∫
(aµ(Ωµ +Xµ + Y µ))2P(Ω)P(a)P(X|Ω)P(Y |Ω) dX dY dΩ da (7)

in the continuum limit. This calculation is left for Appendix A but we get

σ2
δ = np(1−Ns(f

+gf+ + kf 0gf0))2 + f+ns + kf 0ns

and has thus derived the distribution for the individual averaged mean step sizes
for the agents. We can now calculate the fraction positively frozen agents from the
distribution over mean step sizes through

f+ =

∞∫
1+ε

P(x) dx (8)

where P(x) = N (0, σ2
δ ). This simply means we say that the positively frozen

agents will have a mean step size over 1 + ε and will thus be able to on average
overcome their own induced bias as well as the external cost. In the same way the
negatively frozen agents will be from the same distribution but with x < ε and the
fraction fickle in between.

f− =

ε∫
−∞

P(x) dx , f 0 =

1+ε∫
ε

P(x) dx

All these equations are solved self-consistently in the model by setting that the
fraction of a certain type of agent must be equal to the same fraction calculated
in another way, for example Equation 6 equals Equation 8.

In addition we can find the conditional expectations of the mean step lengths
of different types of agents from this distribution and with these we will be able
to find the full score distributions of all agents.

19



4.2 Score distributions 4 STATISTICAL MODEL

4.2 Score distributions

As we now have characterized each agents mean step size we can now ask ourselves
what probability there is to find a certain type of agent with score x at time t. To
answer this question we need to find the full score distributions. This, in turn, is
done by first solving the so-called master equation on an integer chain.

To start we need to find the jump probabilities on the chain. The jump prob-
abilities are the probabilities to jump from one score x to another score x′ in the
next time step. For this purpose we repeat that we will have different mean step
sizes for different agents and we note that A(t), which will determine the hopping
length, has the variance σ2 = Pσ2

δ . To see this, Equation 7 gives us the variance,
σ2
δ , of the mean step size and the variance of the step size would be that expression

multiplied with P . The variance of the step size is equal to the variance of the
attendance considering P(aµ) = N (0, 1) and the assumption of independence of
distributions. Further, since the components in the attendance are all normal-
distributed and the hopping is decided by the attendance, the jump probabilities
should be well approximated by a normal distribution

px→x′ = N(x′−x)(∆mean, σ
2)

where ∆mean simply is the averaged step length for the different types of agent
given by

∆f+ =
1

f+

∞∫
1+ε

P(x)x dx− 1− ε

︸ ︷︷ ︸
average step length positively frozen agents

, ∆f− =
1

f−

ε∫
−∞

P(x)x dx− ε

︸ ︷︷ ︸
average step length negatively frozen agents

∆+ =
1

f 0

1+ε∫
ε

P(x)x dx− 1− ε

︸ ︷︷ ︸
average step length fickle agents x≥0

, ∆− =
1

f 0

1+ε∫
ε

P(x)x dx− ε

︸ ︷︷ ︸
average step length fickle agents x<0

With P(x) = N (0, σ2
δ ). The master equation then takes the form

Px(t+ 1) =
∑
x′

px′→xPx′(t)

where Px(t) is the score distribution. The master equation gives the probability to
find an agent with score x at time t by adding together the possibilities to jump
to that score from every other score. This can be solved in the continuum limit
for fickle agents, and we find the score distribution. For fickle agents we assume
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4.2 Score distributions 4 STATISTICAL MODEL

their score distribution to be stationary, such that Px(t) = Px. This seems like a
reasonable assumption since fickle agents needs to harbour around zero and thus
cannot have a time-dependent drift from zero. This leads to

P(x) ∼ e∓2|∆±|x/σ2

(9)

where ∆± is the conditional averaged step size for active respective inactive fickle
agents. Details of this derivation can be seen in Appendix A.

For frozen agents we realize that they will, on average, drift further from 0 for
each time step. The same problem is solved by Granath and Perez-Diaz in [15] as
well, where they used the derivation of Marsili and Challet [16]. The expression is
derived by solving the Fokker-Planck equation. It will be a diffusion with a drift
and takes the form

P(x, t) = Nx(∆f+,f−t, σ
2t)

where we have different conditional step sizes for positively respective negatively
frozen agents.

From these different probability distributions we can find the full score distri-
butions for the agents by integrating them over the distribution of respective step
sizes. The full distribution will be P(x, t) =

∫
P(∆i)Pi(x,t) d∆i = Pf0(x) +

Pf+(x,t) + Pf−(x,t). The component for fickle agents is computed as

Pf0(x) =

1+ε∫
ε

Nz(0, σ2
δ )2(σ2)−1e2(z−ε−δbias)x/σ2

(z − ε)−1 − (z − 1− ε)−1
dz

where δbias = 0 for x < 0 and δbias = 1 for x ≥ 0 and we have normalized the
expression in Equation 9 over x. For frozen agents we have

Pf+(x, t) =

∞∫
1+ε

Nz(0, σ2
δ )Nx(t(z − 1− ε), σ2t) dz

Pf−(x, t) =

ε∫
−∞

Nz(0, σ2
δ )Nx(t(z − ε), σ2t) dz

Additionally, from the expression for Pf0(x) we find the active fraction of fickle
agents k to be

k =

∞∫
0

Pf0(x) dx

∞∫
−∞

Pf0(x) dx
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Finally we, as Granath and Perez-Diaz did in [15], can integrate and average the
full distribution P (x,t) over a time window to attain the probability to find an
agent with a certain point x between time t0 and t1.
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5 RESULTS

5 Results

We now turn to comparing our model to numerical simulation to see how well it
works. As previously mentioned, the most important features of the model in-
cludes calculating the fraction of the different kinds of agents as well as finding the
full score distribution. We will try our model for different values of the parameters
ns, np and m.

5.1 Fractions of agents

In Figures 7, 8, 9 and 10 we see simulations and corresponding model values for
the different fractions with different values of ns, np and m. All numerical data
points are averaged over 20 runs and the bars are the standard deviations of the
simulations. We note that our model recreates the basic features of how the differ-
ent fractions behave for for different values of np. Thus the model is in pretty good
qualitative agreement with simulations. In particular the model seems to fit very
well for ns = 0.5. We also note that the deviations in simulations seems to lessen
when m gets larger. This is very well in line with what one would have thought as
larger m means that we have larger strategy space and thus the randomization of
strategies in the initiation will have lesser impact. We note that for ns ≤ 1 we have
fairly good quantitative agreement as well. However, as we can see in in Figure
11 the model differ quite considerably quantitatively as well as qualitatively from
numerical simulations for ns = 2. For larger ns these deviations are even bigger
and we conclude that the model does not work at all in these regimes.

In Figure 12 we see how correlated the different types of agents are towards the
producers. We see that our assumption turns out to be in good agreement with
numerical simulations.
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5.1 Fractions of agents 5 RESULTS

Figure 7: With parameters m = 10 and ns = 0.1, we can see how well the charac-
teristics of the model and numerical simulations correspond. Numerical data is the
average over twenty simulations and the standard deviation is plotted to visualize
the rather small deviations.
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Figure 8: With parameters m = 8 and ns = 0.5, we can see how well the charac-
teristics of the model and numerical simulations correspond. Numerical data is the
average over twenty simulations and the standard deviation is plotted to visualize
the rather small deviations.
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Figure 9: With parameters m = 10 and ns = 0.5, we can see how well the charac-
teristics of the model and numerical simulations correspond. Numerical data is the
average over twenty simulations together with standard deviation. With larger m
the simulations get smaller standard deviations.
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Figure 10: With parameters m = 10 and ns = 1, we can see how well the charac-
teristics of the model and numerical simulations correspond. Numerical data is the
average over twenty simulations together with standard deviation.
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Figure 11: With parameters m = 10 and ns = 2, we can see how well the char-
acteristics of the model and numerical simulations correspond. Numerical data is
the average twenty simulations together with standard deviation. We note that for
ns = 2 the model is quite a bit off, and you can clearly see how it is qualitatively
different for small np.
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(a) Numerical fractions of agents.
(b) Modelled fractions of agents, where c
and d are the limits of integration.

Figure 12: Distribution P(~a~Ω) from simulation as well as theoretical, with param-
eters m = 10 and ns = np = 0.5. We note that our assumption of correlation seems
reasonable and we see that the conditional averages roughly will be the same in both
cases.

5.2 Score distribution for fickle agents

In Figures 13a and 13b we see the score distributions for fickle agents from a
simulation where we have looked at the distribution at two different times. We see
that these distributions looks fairly similar and we conclude that our assumption
that it is time-independent is very reasonable.
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(a) Numerical score distribution for fickle
agents at time t = 3.5 · 106.

(b) Numerical score distribution for fickle
agents at time t = 4 · 106.

Figure 13: Numerical score distribution for fickle agents at different times t.

5.3 Full score distribution for all agents

In Figure 14 wee see the full score distribution, integrated over a time window,
of all agents compared to numerical data for m = 8, ns = 0.5 and np = 2

( 1
t1−t0

t1∫
t0

P (x,t)dt, where P (x,t) is the full distribution as seen above). We note

that the theoretical distribution overall agrees very well with simulations, however
as we see in Figure 15 it seems to under predict the probability for agents to have
scores very close to zero. Note that the distribution is a bit skewed to the left -
this is because we have fewer positively frozen agents than negatively frozen.
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Figure 14: Full score distribution integrated over a time window t0 = 4 · 105 to
t1 = 5 · 105 with parameters m = 8,ns = 0.5 and np = 2. The agreement to model
values is very good. To note, there is only a few values for the tails, and the model
under predicts close to x = 0. The numerical data is from 12600 runs with the above
parameters.

Figure 15: Here we see a full score distribution zoomed in around x = 0. Here we
clearly see that it under predicts the probability of very small values of x.
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6 Summary and Discussion

In the first chapter we started the work by familiarizing ourselves with Minority
Game and recreating some of its basic features. These features included showing
how the volatility σ2/N depends on α = 2m/N and how there is a phase transition
between a unpredictable and predictable phase. In the next chapter we moved on
to study the Grand Canonical Minority Game where we first went through the ba-
sics of the game and why it is an interesting model. We introduced three different
types of agents and how to decide in which group to place each agent in numerical
simulations. Further, reasons are given for the choice of regime we chose to study.
We then turn to describing what has been studied in our analytical model of the
game.

In the following chapter we go through our derived statistical model in detail,
describing how we arrived at expressions for the mean step size for agents as well
as expressions for fractions of the different types of agents. Having done that we
turned our attention to deriving full score distribution for the agents by solving the
master equation on an integer chain and then integrating these expressions over
the mean step size distribution. In the last chapter we looked at how our model
compared with numerical simulations.

Now we turn to discuss how well our model works as well as possible improvements
for future works. We have derived an analytical model that both qualitatively and
quantitatively are in fairly good agreement with numerical simulations for ns ≤ 1.
But when we increase ns we see that our model starts to drastically over-predict
positively frozen agents as well as under-predict the negatively frozen agents. The
major reason for this, from what we think, is the term δµ which does not average
to 0 in this regime since the assumption of independence of distributions in this
regime is not reasonable. Here we have an obvious possibility to continue the work
to improve the model - to be able to find a measure of the correlation between aµ

and Xµ, Y µ.

Another obvious thing that we have overseen in our model is the fact that the
number of active agents fluctuates in simulations. We disregard this as the first
thing we do is taking the time average and apply the time averaged φi uniformly
to each history. This means that we cannot simulate the time evolution of ac-
tive agents from our model, but we get a good estimate of the average amount
of activity. This, however, means that we will probably underestimate the actual
fluctuation of the attendance. To be able to account for these fluctuations in active
agents is evidently something that could be studied in further works to possibly
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make the model more accurate. Finally we can mention that there might be a point
in developing a more rigorous framework for how to distinguish between fickle and
frozen agents.
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Appendix A A few analytical calculations

Here we will present some of the calculations of previous chapters that were left
out. First we look into how we find the conditional mean of ~a ·~Ω over the positively
frozen agents

(~a · ~Ω) = P (aµΩµ) = P

∫
aµΩµP(a|Ω)P(Ω) da dΩ

Here we simply make the variable change x = aµ + g+Ωµ to get zero mean random
variables. By doing this we get two terms inside the integral. One is just simply
the expectation of x which will be zero and the other one will be the variance of
Ωµ multiplied with −g+ which is what the integral evaluates to.

The calculation for finding the variance of the step length is as follows, again
with the assumptions of independence of distributions for large P

σ2
δ =

1

P

∫
(aµ(Ωµ +Xµ + Y µ))2P(Ω)P(a)P(X|Ω)P(Y |Ω) dX dY dΩ da

we get that the aµ term integrates to 1, which is to say it is just the variance of
aµ. We then make variable changes on Xµ and Y µ in order to get distributions
centered around 0. If we do this we get

σ2
δ =

1

P

∫
(aµ(Ωµ(1−N(f+g+ + kf0g0)) +X ′µ + Y ′µ))2P(Ω)P(a)P(X ′|Ω)P(Y ′|Ω) dX dY dΩ da

where X ′ ∼ N (0,f+N) and Y ′ ∼ N (0,kf 0N). Because of independence of vari-
ables, and the fact they all are zero mean variables, we only get contributions from
the squared terms. This also means we simply get their variances and we end up
with

σ2
δ = np(1−Ns(f

+gf+ + kf 0gf0)2 + f+ns + kf 0ns

To find the score distributions we need to solve the master equation. For fickle
agents we assume the score distribution is time independent. The equation in the
continuum limit then becomes

P(x) =

∫
1√

2πσ2
e−

(x−x′−∆±)2

2σ2 P(x′) dx′

If we now make the change of variables x−x′ = −s and the ansatz that P (x+s) =
P (x)P (s) we get

P(x) = P(x)

∫
1√

2πσ2
e−

(s+∆±)2

2σ2 P(s) ds
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which means that
∫

1√
2πσ2

e−
(t+∆±)2

2σ2 P(s)ds = 1. If we now multiply and divide the

integrand with e−
2∆±s
σ2 we have∫

1√
2πσ2

e−
(s−∆±)2

2σ2 e−
2∆±s
σ2 P(s) ds = 1

and if P(s) = e
2∆±s
σ2 we are left with an integral over a normal distribution over the

entire real line which obviously integrates to 1. We have thus shown the expression
for the fickle agents score distribution.
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