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Abstract

New Algorithms for Dynamical Mean Field Theory
SAM VAJEDI

Department of Fundamental Physics

Chalmers University of Technology

In this thesis single particle Green’s functions in quantum many particle
physics are studied. The Green’s function gives us the density of states which
is an important characteristic distinguishing for example a metal from an in-
sulator. For systems with strongly correlated electrons the Green’s function
cannot in general be computed exactly. One approximation scheme, called
the dynamical mean-field theory (DMFT), has been used to investigate such
systems.

In its most common form, DMFT analyzes the problem on frequencies on
the imaginary axis, while the physical properties are functions of frequencies
on the real axis. The first problem is therefore to investigate an analytical
continuation to transform Green’s functions of purely imaginary frequencies
to Green’s functions of real frequencies. The stability of the Padé approxi-
mants, used for such a transformation, is examined by applying some noise
to the input functions.

It is found that the error of the Padé approximation increases linearly
with respect to the noise, up to a crucial point where for larger noise the
error of the output does not change. It is verified that a first and second
order Taylor expansion of the analytic continuation cannot explain this phe-
nomenon; they can only explain the linear behavior at small noise levels.

In the second part of the thesis a di↵erent method, called the distri-
butional exact diagonalization method is used which directly computes the
self-energy in the complex frequency plane; no analytic continuation is there-
fore needed. The method is used to calculate the spectral function for a Mott
insulator at zero temperature with the chemical potential µ = U/2, where
U is the interaction energy.

The spectral function of the Mott insulator contains two Hubbard bands
located at ±U/2, which is in agreement with previous results. When the
interaction energy U = 4, two peaks are shown in addition to the Hubbard
bands, but no peaks are shown for U = 10. This kind of behavior can be seen
when using the distributional exact diagonalizition method, while if one uses
some impurity solver that requires analytic continuation, this information
might be lost in the process. The results seem to imply that distributional
exact diagonalizing is a good method for capturing real-frequency structure
within DMFT.

Keyword: Many-body Systems, Strongly Correlated Fermions, DMFT,
Analytic Continuation, DistED, Padé Approximation.
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1 Introduction
Many approximation schemes and numerical methods have been developed
to overcome the di�culties related to strongly correlated systems. One of
them is dynamical mean field theory (DMFT) [1]. It is applicable to strongly
correlated electrons in solids and cold atoms in optical lattices [2], and it has
seen much success in explaining for instance the behavior of Mott insulators,
Mott transition and phase separation.

DMFT has some similarities with the classical mean field theory (MFT);
they both map a many-body lattice problem onto a local single-site prob-
lem. MFT can be used for the Ising model to reduce the magnetic field to
an e↵ective mean field, thus reducing a many-body problem to a one-body
problem. DMFT, on the other hand, maps a quantum many-body lattice
problem, like the Hubbard model, to a local (Anderson) impurity model,
with a self-consistency condition. The impurity models are in general more
easily solvable by various methods: quantum Monte Carlo, exact diagonal-
ization, iterative perturbation scheme, and so on.

The DMFT equations are in their most common form written in terms
of Green’s functions defined in the imaginary Matsubara frequency space,
which are just the Fourier transforms of the imaginary time Green’s func-
tions. A finite temperature Green’s function is the key object in many-body
physics and characterizes a wide range of experimentally accessible observ-
ables.

Solving the DMFT equations yields, in many cases, Green’s functions
and self-energy as function of imaginary frequencies, but physical observ-
ables are calculated using the real time Green’s functions. Thus, analytic
continuation has to be performed in order to transform the imaginary time
Green’s functions from the imaginary time axis to the real time axis. Since
we only know the values of the Green’s functions at a finite set of the Matsub-
ara frequencies it is not trivial to do the analytic continuation numerically.
A widely used technique to handle this problem is by applying the Padé
approximant method.

Since this procedure is very unstable, one would contrary to this expec-
tation expect the Padé method to be extremely dependent on the accuracy
of the input data. This would imply that if the input data is not accurate
enough it can lead to non-physical results. (The acquired precision depends
on the temperature and number of poles used in the method.)

When applying some noise the analytic continuation behaves surprisingly
stable; input data with high noise still gives reasonable results. The aim of
the first part of the thesis is therefore to investigate the analytic continuation
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by Padé approximation of the Matsubara data to explain why the method is
stable even though the singular values of the Jacobian turns out to indicate
the opposite.

The second part of the thesis presents the results of calculating the full
analytic self-energy in the complex frequency plane. The method that is used
for this is a distributional exact diagonalization method (DistED method) for
quantum impurity models, which was developed by M. Granath and H. U. R.
Strand [3]. This method is especially useful for computing real frequencies
of self-energy, and therefore there is no need of analytic continuation from
imaginary frequencies. In this thesis the distributional exact diagonalization
formalism is applied to systems with strongly correlated electrons in a Mott
insulator, within DMFT.

1.1 Outline

This thesis starts by introducing the basic concept of Green’s functions and
the spectral functions in Chapter 2. Some crucial relations are derived,
and the non-interaction Green’s function and the spectral function of the
non-interaction Hamiltonian are calculated. In Chapter 3 the analytic con-
tinuation, using the Padé approximant, is described. Later in this chapter a
spectral function is derived from the one-dimensional, tight-binding Hamil-
tonian and used as a test function to investigate the accuracy of the analytic
continuation.

In Chapter 4 the stability of the transformation from Green’s functions
of imaginary time to Green’s functions of real time is covered. This is done
by studying the first order approximation and the singular values of the
Jacobian, and then investigating the second order approximation. Chapter
5 summarizes part I of this thesis.

In Chapter 6 the dynamical mean field theory is presented. Exact diag-
onalization (as well as Anderson model mapping) is introduced as a way to
calculate the local interacting Green’s function GI . In Chapter 7 DistED
algorithms are covered using what is already known from exact diagonal-
ization. Later in that chapter, some important aspects of the Mott metal-
insulator transition are explained, and the self-energy for real values is cal-
culated by applying distributional exact diagonalization. A discussion about
the results and some comparisons with earlier results are made in the end
of this chapter.

1.2 Background

It has been known for some time how to explain the properties of materials
with weakly correlated electrons, such as simple metals, some semiconduc-
tors and insulators. Using band theory one is able to predict is in these
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cases whether or not a material is conducting, semiconducting or insulating.
Materials with open shells, i.e. materials for which not all states in the shell
are occupied, are conducting, while materials with filled shells and with an
energy gap to the next unoccupied state are insulating. Several techniques
exist to calculate various microscopic properties of materials with weakly
correlated electrons. The density functional theory (DFT) is the main tech-
nique for such systems. It allows us to calculate the total energy by map-
ping a many-body problem of interacting quantum mechanical particles to
a non-interacting Kohn-Sham reference system with a density dependent
single-particle e↵ective potential [4].

DFT gives high accuracy for the ground state of wide-band metallic and
insulating systems when the temperature is zero, but has problems with
systems closer to the atomic limit containing partially filled narrow bands,
and where the electron-electron interaction has a more dominant role.

Band theory also fails to explain the behavior of materials with open
shells where the electrons occupy narrow orbitals. In these materials the
strong Coulombic repulsion, caused by the spatial confinement of electrons
that occupy narrow orbitals, makes it impossible to treat the electrons in-
dependently.

Neville Mott discussed in his paper 1937 [5] that insulators can be un-
derstood by thinking of them as a collection of localized electrons bound
to atoms with partially filled shells. To describe strongly correlated sys-
tems one has to consider this localization of electrons, but they can also be
treated as delocalized plane waves. Models for strongly correlated systems
must therefore include the components of the real-space and momentum-
space picture. This makes strongly correlated systems di�cult to model.
One of the simplest ways to treat these systems is to take into account only
the electron orbitals near the Fermi level and only incorporate in an e↵ective
Hamiltonian.

The Hubbard model [6] is often used to capture localized and delocalized
behaviors of the electrons, and is defined by

HHub =
X

ij,�

tijc
†
i�cj� + U

X

i

ni"nj#. (1.1)

HHub describes electrons moving between localized states at lattice sites i
and j with spin " or #. The hopping term ti,j contains the delocalized
behavior of the electrons while the local Coulomb repulsion energy U gives
the localized behavior, and these terms compete. If ti,j is much larger than
U then the electrons will move freely between the atoms, as in metals. For
large U two electrons are prevented from occupying the same site and may
therefore be more localized on the site (in materials with half-filled shells
the electrons will be fully localized).

The Hubbard model and the DMFT solution for strongly correlated elec-
trons are discussed in more detail in Chapter 6. Here a mathematical de-
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scription is needed of the lifetime of the electron occupancy at a particular
site, which is done using Green’s function of imaginary time. This will be
further discussed in the next chapter.



2 Matsubara Green’s
Functions and
Spectral Functions

Green’s functions appear as natural quantities to characterize many-particle
systems. They are closely related to experimental observables and have
therefore many applications. However, in most cases it is very complicated to
calculate Green’s functions exactly, and instead one has to use perturbation
theory or other approximation methods [7].

Green’s functions are extensively used in this thesis, and this chapter
therefore introduces the Green’s functions that are necessary when working
with strongly correlated fermions. Important properties are also derived and
some concept are given of how to treat the Green’s functions.

Various definitions of Green’s functions will now be presented, and we
first consider the general case of an n-body real-time Green’s function in the
Grand Canonical Ensemble and in the Heisenberg representation:1

G(n)(x1t1, · · ·xntn;x01t01, · · ·x0nt0n) =
= (�i)nhT (x1t1) · · · (xntn) †(xntn) · · · †(x1t1)i,

where  (x,t) ⌘ ei(H�µN)t (x)e�i(H�µN)t and h·i is the thermal average.
The retarded and advanced Green’s functions are given by the two point

functions [8]

GR(rt,r0t0) ⌘ �i✓(t � t0)h{ (rt), (r0t0)}i,
GA(rt,r0t0) ⌘ i✓(t0 � t)h{ (rt), (r0t0)}i.

The propagation of one particle at the ground state | 0i is described by a
two-point Green’s function and is defined by

G(rt; r0t0) = � i

~h 0|T (r,t) †(r0,t0)| 0i, (2.1)

where T is the time ordering operator which is given by the following rela-
tion:

T (r,t) †(r0,t0) =

⇢
 (r,t) †(r0,t0) for t > t0

± †(r0,t0) (r,t) for t0 > t.

1If the imaginary-time Heisenberg representation is used we let t ! ⌧ and skip the
factor of (�i)n.
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We have here chosen to only consider fermions.
It is di�cult to evaluate the time evolution operators, eit(H�µN), pertur-

batively because the calculation to invert from Fourier transform involves
integral in complex plane. To make the calculation easier one can define a
Green’s function, called Matsubara Green’s function, that is a time-ordered
product along the imaginary axis. The Matsubara Green’s function will later
be connected with the retarded Green’s function, which is used to calculate
physical observables.

The Matsubara Green’s function is defined by

G(r,r0; ⌧ � ⌧ 0) = �hT⌧ (r,⌧) (r
0,⌧ 0)i,

where �� < ⌧ � ⌧ 0 < �. The time evolution operators are defined by

 (r,⌧) ⌘ e⌧K (r)e�⌧K ,

 †(r,⌧) ⌘ e⌧K †(r)e�⌧K ,

where K = H � µN . The time evolution operators are here the same as
before, but we now use the imaginary time ⌧ = it.

The Matsubara Green’s function has an antiperiodic property which can
be proved by calculating

G(r,r0; ⌧ + �) =
�1

Z
Tr[e��He(⌧+�)H (r)e�(⌧+�)H (r0)] =

=
�1

Z
Tr[e⌧H (r)e�⌧He��H (r0)] =

=
�1

Z
Tr[e��H (r0)e⌧H (r)e�⌧H ] =

=
�1

Z
Tr[e��HT⌧ (r,⌧) (r

0)] = �G(r,r0; ⌧),

when ⌧ < 0. In the same way, one can prove that

G(r,r0; ⌧ � �) = �G(r,r0; ⌧)

when ⌧ > 0. This property is used to expand the Green’s function in a
Fourier series that will automatically satisfy the property. The Green’s
function becomes

G(r,r0; ⌧) = 1

�

1X

n=�1
e�i!n⌧G(r,r0; i!n), (2.2)

where we now have introduced the Matsubara frequencies for fermions, !n =
(2n+ 1)⇡/�.

From (2.2) one finds

G(r,r0; i!n) =

Z �

0
d⌧ei!n⌧G(r,r0; ⌧). (2.3)
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To derive the relation between GR(r,t; r0,t0) and G(r,r0; i!n) we will first
introduce the spectral representation for GR and G. The spectral function
is defined by

A(r,r0; t) ⌘
D
{ (r,t), †(r0,0)}

E
, (2.4)

and we can therefore express the retarded Green’s function as GR(r,r0; t) =
�iA(r,r0; t)✓(t). The spectral representation is obtained by taking the Fourier
transform of our rewritten GR:

GR(r,r0;!) =

Z 1

�1

d!0

2⇡

A(r,r0;!0)

! + i⌘ � !0 .

Now, when the spectral representation of GR is determined, the next step
is to calculate the spetral repesentation of G. From (2.3) we get

G(r,r0; i!n) =

Z �

0
d⌧e�i!n⌧

h
�h (r,⌧) †(r0,0)i

i
=

=

Z 1

0
d(it)e�i!n(it)

h
�heiKt (r)e�iKt †(r0,0)i

i
+

+

Z 0

1
d(it)e�i!ni(t�i�)

h
�heiK(t�i�) (r)e�iK(t�i�) †(r0,0)i

i
=

= . . . = �i

Z 1

0
dt
D
{ (r,t), †(r0,0)}

E
ei(i!n)t.

Using the definition of the spectral function in (2.4) gives

G(r,r0; i!n) =

Z 1

�1

d!0

2⇡

A(r,r0;!0)

i!n � !0 . (2.5)

We have now obtained the spectral representations of both GR and G. Com-
paring these results gives us the relation

GR(r,r0;!) = limi!n!!+i⌘(G(r,r0; i!n)). (2.6)

The mapping of a Green’s function of imaginary frequencies, i!n, to real
frequencies, !, is what we refer to as an analytic continuation. Note that
G(r,r0; i!n) was calculated under the assumption that !n > 0. If one instead
assumes that !n < 0 another relation is obtained:

GA(r,r0;!) = limi!n!!�i⌘(G(r,r0; i!n)). (2.7)

Combining the definition of the spectral function with (2.6) and (2.7) yields

A(r,r0;!) = ilim⌘!0[G(r,r0;! + i⌘) � G(r,r0;! � i⌘)]

)A(r,r0;!) = �2Im[GR(r,r0;!)]
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For translationally invariant systems it is better to define the Matsub-
ara Green’s function in momentum space. Rewriting G(r,r0; ⌧ � ⌧ 0) using
momentum and real space second quantized operators one obtains

G(k, ⌧ � ⌧ 0) = �hT⌧ ck(⌧)c
†
k(⌧

0)i.

This definition is used to calculate the Matsubara Green’s function in mo-
mentum space of a non-interacting system, which is governed by the Hamil-
tonian

H0 =
X

k

("k � µ)c†kck.

Firstly, we need to calculate ck(⌧) by solving the Heisenberg equation of
motion,

@ck
@⌧

= [H0,ck] = {H0,1}ck � 1{H0, ck} = �("k � µ)ck

) ck(⌧) = e�("k�µ)⌧ ck.

The Green’s function in momentum space becomes

G(k,⌧) = �hT⌧ ck(⌧)c
†ki = �e�("k�µ)⌧ [hckc†ki✓(⌧) � [hc†kcki✓(�⌧)].

We now apply some standard results from elementary statistical mechanics,
such as

hc†kcki =
1

e�("k�µ) + 1
and hckc†ki = 1 � hc†kcki,

to the non-interacting Green’s function in momentum space:

G0(k, i!n) = �
Z �

0
d⌧

✓
1 � 1

e�("k�µ) + 1

◆
ei!n⌧e�("k�µ)⌧ = . . . =

=
1

i!n � "k + µ
.

The Matsubara Green’s function of the non-interacting Hamiltonian H0 is
therefore G0(k, i!n) = 1/(i!n � "k + µ). For a system with an interaction
term in the Hamiltonian one only has to add the self-energy ⌃(k, i!n):

G(k,i!n) =
1

i!n � "k + µ � ⌃(k,i!n)
. (2.8)

In other words, the contribution of the interaction only enters through the
self-energy for the interaction Green’s function (this equation can also be
written on the form G(k,i!n) = (G0(k, i!n)�1 � ⌃(k,i!n))�1). This fact
was shown by F.J. Dyson [9] when he expressed the relation between the
non-interacting and interacting Green’s functions in terms of the self-energy.
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Let us return to the non-interacting Hamiltonian and calculate the spec-
tral function using the fact that we already know G0. The spectral function
is given by

A0(k,!) = i [G0(k,! + i⌘) � G0(k,! � i⌘)] =

= i


1

! + i⌘ � "k + µ
� 1

! � i⌘ � "k + µ

�
=

= 2⇡�(! � "k + µ).

In other words, for a system describing free electrons the spectral function
is just a delta function.

The definitions that were introduced and the properties that we deter-
mined in this chapter will not only be used for calculating relevant properties
but will also make it easier to understand and interpret the results.



Part I



3 Analytic Continuation
A major di�culty with analytic continuation is that the value of the analytic
continuation on the real axis are very sensitive to the values used to deter-
mine the function on the complex axis. This is a well known problem for all
methods involving analytic continuation. In our case, we will be using Padé
approximation to do the analytic continuation, where these instabilities can
be monitored using arbitrary precision arithmetic.

In the end of part I we will discuss the stability of the analytic continu-
ation. We also hope to find a relation between the precision of the output
and the precision of the input; it will then be possible to decide the accuracy
of the input if a certain accuracy of the output is required.

We start by going through the algorithms for the analytic continuation
in this chapter and in the next chapter the Jacobian will be determined and
compared with the real stability using small noise in the input.

The Green’s function of imaginary frequencies is easy to calculate from
the spectral function, A(!), by using the formula (2.5),

G(i!n) =

Z
d!

2⇡

A(!)

i!n � !
, (3.1)

where !n are the Matsubara frequencies. Since we only know the values
of the Green’s functions on a finite set of points on the imaginary axis an
approximation method will be used, called the Padé method. The Padé
fitting gives the Green’s function of the whole complex !-plane.

From many-particle physics one can prove using the spectral representa-
tion of Matsubara Green’s function that [7]

G(i!n) ! 1

i!n
when i!n ! 1,

which means that our Padé approximation should have the form [10]

G(z) =
P (z)

Q(z)
=

p0 + p1z + p2z
2 + . . .+ pn/2�1z

n/2�1

1 + q1z + q2z2 + . . .+ qn/2zn/2
, (3.2)

where {pi}n/2�1
i=0 and {qi}n/2i=1 are unknown coe�cients and n is the number

of known Matsubara frequencies. The function G(z) denotes the Green’s
function in the complex plane. When rearranging the factors in (3.2) and
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inserting the n di↵erent Matsubara frequencies one obtains these equations:

G(i!1)(1 + . . .+ (i)n/2qn/2!
n/2
1 ) = p0 + . . .+ (i)n/2�1pn/2�1!

n/2�1
1

G(i!2)(1 + . . .+ (i)n/2qn/2!
n/2
2 ) = p0 + . . .+ (i)n/2�1pn/2�1!

n/2�1
2

...

G(i!n)(1 + . . .+ (i)n/2qn/2!
n/2
n ) = p0 + . . .+ (i)n/2�1pn/2�1!

n/2�1
n

(3.3)

The unknown complex constants {pi}n/2�1
i=0 and {qi}n/2i=1 are easily computed

by rewriting (3.3) into a linear equation:

0

BBBB@

i!1G(i!1) · · · �1 · · · �(i)n/2�1!
n/2�1
1

i!2G(i!2) · · · �1 · · · �(i)n/2�1!
n/2�1
2

...
...

...
...

i!nG(i!n) · · · �1 · · · �(i)n/2�1!
n/2�1
n

1

CCCCA

0

BBBBBBBB@

q1
...

qn/2
p0
...

pn/2�1

1

CCCCCCCCA

= �

0

B@
G(i!1)

...
G(i!n)

1

CA

) Âx = �Gn.

Solving these equations gives us the function G(z) = P (z)
Q(z) for any com-

plex number z. The Green’s function for the whole real axis (i.e. for real
frequencies !) is obtained by letting z only attain real values.

This procedure of transforming a function of pure imaginary frequencies
to the same function of real values achieves the analytic continuation. To
check how accurate this method is one can, for known G(!), calculate the
spectral function using

A(!) = �2Im(G(!)),

and then compare this with the spectral function in (3.1). First a test
spectral function has to be defined; we will use a spectral function of a real
physical system.

We choose spectral function of a single-site Anderson impurity model
in the absence of Coulomb interactions. The system is a one-dimensional,
infinite tight-binding lattice with a single impurity at site i = 0 (See Fig.
3.1), and is assumed to have zero chemical potential and to be in thermal
equilibrium. To find the spectral function for this system we will start with
the Hamiltonian that governs the tight-binding geometry:

H = �t
X

i

(c†i+1ci + c†ici+1) + "0c
†
0c0. (3.4)

Here t > 0 is the hopping amplitude between nearest neighbours, and the
impurity located at site i = 0 has the strength "0, which we assume is
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Figure 3.1. An infinite chain with one impurity at site i = 0 and with the hopping
amplitude t.

greater than zero. To compute the spectral function, one needs to find the
non-interaction Green’s function, G0, with respect to the first site, i = 0.
Normally one would calculate the eigenstates and the eigenvalues of the
Hamiltonian, but because of the impurity in our problem another approach
will be used. First the Green’s function of a semi-infinite chain without
impurity is calculated with induction. The sought Green’s function can
then be computed by connecting one impurity site, "0, with two baths, for
which the Green’s function is known as shown in Fig. 3.2.

Figure 3.2. Instead of an infinite chain with impurity, the same system can be
seen as two baths connected to the impurity.

We rewrite the Hamiltonian in (3.4) in a more suitable form:

H = "0c
†
0c0 � t(c†1c0 + c†0c1) � t(c†0c�1 + c†�1c0)

� t

1X

i=1

(c†i+1ci + c†ici+1) � t

�1X

i=�1

(c†ici�1 + c†i�1ci)

The full Hamiltonian can be presented in block form [11]

H =

0

@
H↵0,↵ H↵0,0 0

H0,↵0 H0,0 H0,�

0 H�0,0 H�0,�

1

A ,

where ↵0, ↵ = �1, � 2 . . ., �0, � = 1,2 . . . and 0 is a block matrix. We know
that the Hamiltonians have to fulfill H↵0,0 = HT

0,↵ and H�0,0 = HT
0,� .

The matrix Green’s functionG is obtained by the relation (zI�H)G = I;

0

@
z�↵0,↵ � H↵0,↵ H↵0,0 0

H0,↵0 z � H0,0 H0,�

0 H�0,0 z��0,� � H�0,�

1

A

0

@
G↵,↵00 G↵,0 0

G0,↵00 G0,0 G0,�00

0 G�,0 G�,�00

1

A = I,

where G↵,↵00 , G↵,0, G0,↵00 , G0,0, G0,�00 , G�,0 and G�,�00 are the Green’s func-
tions corresponding to the HamiltoniansH↵0,↵, H↵0,0, H0,↵0 , H0,0, H0,� , H�0,0
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and H�0,� , respectively and where summation is implied in the repeated sub-
matrix index. The next step is to calculate h0|(zI � H)�1|0i, which is done
by first studying a more general case. Let Aij and Bij be block matrices,

0

@
A11 A12 0
A21 A22 A23

0 A32 A33

1

A

0

@
B11 B12 0
B21 B22 B23

0 B32 B33

1

A = I.

Since we want to find B22, the sought equations are
8
<

:

A11B12 +A12B22 = 0 ) B12 = �A�1
11 A12B22

A21B12 +A22B22 +A23B32 = I

A33B32 +A32B22 = 0 ) B32 = �A�1
33 A32B22

) (�A21A
�1
11 A12 +A22 � A23A

�1
33 A32)B22 = I.

The Green’s function G0 is given by

G0(z) = h0|(zI � H)�1|0i.

Using the result in the previous equation and identifying (A21)0,↵ = H0,↵,
(A12)↵0,0 = H↵0,0, (A11)↵0,↵ = z�↵0,↵ � H↵0,↵, A22 = (z � "0) etc., and using
the fact that the o↵-diagonal elements of H are just equal to t, we find

G0(z) =
�
�t2G�1,�1 + z � "0 � t2G1,1

��1
, (3.5)

where the Green’s function G�1,�1 and G1,1 are not a block matrix but
the Green’s function of a semi-infinite chain without impurity at the site
i = �1 and i = 1, respectively. The Green’s functions G�1,�1 and G1,1 are
describing the same system and are therefore equal, G1,1 = G�1,�1 = G0.

Now that we have an expression relating G0(z) and the Green’s function
of the bath, we calculate G0 by finding the Green’s function for the first site,
i = 1, which will depend on the Green’s function G00 for the second site i = 2
(See Fig. 3.3). As both Green’s functions describe a semi-infinite chain they
should be equal [12]. The Hamiltonian corresponding to the first site of the

Figure 3.3. The Green’s function G0 can be expressed in terms of G00.

bath is given by

H�0,� = �t(c†2c1 + c†1c2) � t

1X

i=2

(c†i+1ci + c†ici+1).



16 3. ANALYTIC CONTINUATION

Using the same algorithm as before and the fact that G0 = G00, the equation
✓

z H1,�

H�0,1 zI � H�0,�

◆✓
G0 G1,�0

G�,1 G�,�0

◆
= I

becomes

G0 =
1

z � t2G0 ) G0(z) =
z ±

p
z2 � 4t2

2t2
.

The Green’s function for an infinite chain with impurity is therefore given
by

G0(z) =
�
z � "0 � 2t2G0(z)

��1
=
⇣
�"0 ±

p
z2 � 4t2

⌘�1
. (3.6)

The spectral function has to be positive, so one only needs to consider one of
the solutions (when ImG0 < 0). The Green’s function can then be written
as

G0(z) =

(
1

�"
0

+i
p
4t2�z2

|z|  2t
1

�"
0

+
p
z2�4t2

|z| > 2t

In the case |z| > 2t, there is a singularity at
p
z2 � 4t2 = "0 that can be

avoided by using the substitution z = ! + i⌘, for ⌘ ! 0. The Green’s
function for |z| > 2t is

1

�"0 +
p

(! + i⌘)2 � 4t2
=

1

�"0 +
p
!2 � 4t2

q
1 + 2i!⌘

!2�4t2

=
1

�"0 + i⌘0 +
p
!2 � 4t2

,

where ⌘0 = i!⌘/(!2 � 4t2) ! 0 when ⌘ ! 0. So the Green’s function in
terms of frequency ! is:

G0(!) =

(
1

�"
0

±i
p
4t2�!2

|!|  2t
1

�"
0

+i⌘0±
p
!2�4t2

|!| > 2t

Thus, the spectral function A(!) is given by

A(!) =
1

⇡

p
4t2 � !2

4t2 � !2 + "20
✓(|!| � 2t)

+
"0p

4t2 + "20
�(! �

q
4t2 + "20 ),

where we have rewritten the delta function using the relation �(f(x)) =P
i �(x � xi)/| dfdx(xi)|, and ⌘0 ! 0. In this thesis we choose t = 1 and

"0 = 1.5 as in [13], which gives us the expression

A(!) =
1

⇡

p
4 � !2

6.25 � !2
✓(|!| � 2) +

3

5
�(! � 2.5). (3.7)



17 3. ANALYTIC CONTINUATION

Figure 3.4. The spectral function after analytic continuation when using di↵er-
ent N

⌦

, together with the spectral function before performing the analytic
continuation (“exact” line).

Now, let us use this spectral function to analyze the analytic contin-
uation. A crucial thing is that the accuracy of the analytic continuation
depends on how many Matsubara frequencies N⌦ are used: a higher value
of N⌦ means higher order of P (z) and Q(z) which gives a more accurate
approximation of the Green’s function of real values. In Fig. 3.4 the spectral
function given in (3.7) is plotted together with spectral functions computed
with analytic continuation for di↵erent N⌦.

For N⌦ ⇡ 20 the approximated spectral function is almost the same as
(3.7). Hence, when investigating this analytic continuation, N⌦ > 20 will
be used from now on.



4 Stability of the Analytic
Continuation

We are interested in investigating the analytic continuation to the real axis
of a function whose values are {Gi}ni=1 ⌘ {G(i!i)}ni=1 on the imaginary
axis. We want to know the values {Gr

j}mj=1 ⌘ {G(xj)}mj=1 on the real axis.
Since the analytic continuation is defined only by a discrete set of values,
the analytic continuation is not unique, and the stability of the results may
depend on the choice of form for the analytic continuation. In our case, we
will let the Padé approximation determine the analytic continuation and we
will discuss the stability of this continuation scheme as a function of the
values on the imaginary axis.

We define F(G) to be a function of input values G. F then calculates
an analytic continuation based on these values and gives Gr corresponding
to a set of argument on the real axis. Thus we may write

F : G 7!
F

1

(↵1 . . .↵n) 7!
F

2

Gr

where (↵1 . . .↵n) are parameters parameterizing our analytic continuation in
(3.2). In our case (↵1, · · · ,↵n/2,↵n/2+1, · · · ,↵n) = (p0, · · · , pn/2�1,q1, · · · , qn/2),
where p and q are the coe�cients of the Padé fit to G. With this notation
we have F = F2 � F1.

The Jacobian of this transormation is given by

@F(G)

@G
= J

Since F = F2 � F1 we know that J = J2J1 where each of these Jacobians
are given by

(J1)
�1 =

0

BBB@

@G
1

@↵
1

@G
1

@↵
2

· · · @G
1

@↵n
@G

2

@↵
1

@G
2

@↵
2

· · · @G
2

@↵n
...

...
. . .

...
@Gn
@↵

1

@Gn
@↵

2

· · · @Gn
@↵n

1

CCCA
,

where we have utilized the fact that the Jacobian transformation of the
inverse function is given by the inverse Jacobian and Gj is given by (3.2).
The second part, J2, will be the Jacobian of the mapping going from the
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space ↵ of Padé coe�cients to Gr:

J2 =

0

BBBB@

@Gr
1

@↵
1

@Gr
1

@↵
2

· · · @Gr
1

@↵n
@Gr

2

@↵
1

@Gr
2

@↵
2

· · · @Gr
2

@↵n
...

...
. . .

...
@Gr

m
@↵

1

@Gr
m

@↵
2

· · · @Gr
m

@↵n

1

CCCCA
,

The Jacobian J2 is therefore not necessarily a square matrix. It is important
to stress that arbitrary precision arithmetic has to be used to enable the
numerical calculation of J .

In order to investigate the stability of this mapping, we look at the
numerical di↵erence on the real axis obtained by varying the input data on
the imaginary axis. Thus we define �F = F(G � �) � F(G) and � is some
small noise applied invidually to each of the input values along the imaginary
axis. The question we would like to address is what the limit to the noise
must be so that the deviation is approximated by a linear tranformation:

�F ⇡ J�. (4.1)

Let us now see to what extent the approximation holds for di↵erent noise
levels. In Fig. 4.1 one can see �F for N⌦ = 32, 40, 52, 60 when ||�|| = � =
10�10, 10�20, 10�30, 10�40, 10�50, 10�80, 10�90, 10�130, i.e. the left hand side
of equation (4.1) is plotted.

Figure 4.1. The error �F as a function of the noise � when using di↵erent values
of N

⌦

.
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For small noise levels � the error of the function F increases for larger
values of N⌦, and after a certain threshold the slope of the graph decreases
so that for large magnitudes of � the function F gives the same error for
di↵erent values of N⌦. From Fig. 4.1 one can learn that if N⌦ = 32 and an
accuracy of twenty decimal places on the output data is needed, the input
data must have a precision of at least fifty decimal places.

It is perhaps not intuitive that a function F, which is unstable for small
noise levels, starts to be very stable for larger values of �. The reason why
F is unstable for small values of � should be because the poles in G(z),
i.e. the roots of Q(z), are moved when some noise � is added. Even small
displacements of the poles give large di↵erences for values close to the poles.
A relevant question is then; why does the Fig. 4.1 have a breaking point
where the slope of the curve decreases? Most of the first part of the thesis
will focus on explaining this behavior.

Figure 4.2. The first order approximation of the analytic continuation for di↵erent
values of N

⌦

, together with the error �F.

In Fig. 4.2 the first order approximation (the right hand side of (4.1))
is visualized together with the exact error �F. The figure shows that (4.1)
is only satisfied for small �, where the breaking point is not reached. It is
evident from both Fig. 4.1 and Fig. 4.2 that the breaking point depends on
N⌦.

It is worth mentioning that the error also depends on which interval of
the real axis is considered. If we choose points near the poles the error of
F increases. In these plots we have chosen to consider points in the interval
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! 2 [�5,5] where our spectral function A(!) 6= 0. In Fig. 4.2 we only change
the value of N⌦ and the number of values on the real axis is kept constant.
The reason for this is that the value of Nr does not a↵ect the stability, which
is shown in the next section.

Using singular value decomposition the Jacobian may be written as

J = U⌃V T =
X

j

�jujv
T
j , (4.2)

where uj and vj are the left and right eigenvectors, respectively, of the
Jacobian, and �j are the singular values. One may reason, using this form
of the Jacobian, that the direction that contributes the most to the first order
approximation of F is the eigenvector, umax, corresponding to the largest
singular value �max. In order to verify this, the values of �F = F(G+ �) �
F(G) is plotted and compared with the first order Taylor expansion and we
use � = �umax in Fig. 4.3. The figure shows that the first order Taylor
expansion has a slope with the same magnitude as �max�umax. Hence, we
can conclude that the maximum eigenvector contributes the most to the
Jacobian, which means that it is not necessary to take the other terms into
account. We will later use this fact to calculate the second order Taylor
expansion of the transformation F.

Figure 4.3. The “exact” error �F and the first order approximation J�, together
with the function �

max

�u
max

. N
⌦

is set to a constant value.
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4.1 Singular Values of the Jacobian

The Jacobian is now investigated to see how the number of points on the
imaginary axis, N⌦, and the number of points on the real axis, Nr, a↵ect the
singular values of the Jacobian, and if it is possible to find a dependence on
N⌦ and Nr. If this is shown to be true then we only need to consider one case
and the rest can be calculated through scaling. It is especially important
to investigate whether the maximum singular value, �max, depends on N⌦

and Nr, because it is the term of the Jacobian that contributes most to the
error.

Figure 4.4. The singular values of the Jacobian for di↵erent values of Nr, when
N

⌦

= 40.

The singular values of the Jacobian J can be seen in Fig. 4.4 and Fig.
4.5. In Fig. 4.4 the di↵erent lines have di↵erent values of Nr, and N⌦ = 40,
while N⌦ is varying and Nr is constant in Fig. 4.5. In both cases the
di↵erence between �max and �min is huge, and �max � �i for �i 6= �max.
This would explain Fig. 4.3 which indicates that the maximum singular
value and its corresponding eigenvector is the term that contributes the
most in the Jacobian.

In Fig. 4.4 it seems that both the maximum and minimum singular
values are constant for all Nr. This becomes clearer in Fig. 4.6 and Fig. 4.7
which show only the maximum and minimum singular values �max and �min,
respectively, for di↵erent values of Nr. It seems as if the maximum singular
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Figure 4.5. The singular values of the Jacobian when Nr = 100 while the number
of Matsubara frequencies is varying.

value does not depend on Nr. This means that the choice of Nr does not
change the singularities of J , i.e. the stability is unchanged. Therefore, we
do not need to consider Nr, and it will be set to a constant.

The minimum singular value �min, however, seems to depend on the
value of Nr in a way that is di�cult to predict.

Fig. 4.8 illustrates the N⌦-dependence of the singular values of the
Jacobian. It is shown that for higher values of N⌦ the maximum singular
value increases, while the minimum singular value can be seen to decrease
in Fig. 4.9. Fig. 4.8 shows that �max does not have a linear dependence
on N⌦, and because any other dependence was not possible to find one has
to consider di↵erent values of N⌦ when investigating the stability, i.e. no
scaling can be made.

In the case of Fig. 4.9 it was not possible find any good fitting relating
�min and N⌦.

In summary, by examining the singular values we learned that the Ja-
cobian is not dependent on Nr. The next step is to add one order to our
Taylor expansion of the transformation F to see if it is possible to explain
the behavior of �F.
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Figure 4.6. The maximum singular value �
max

as a function of Nr. The number
of frequencies N

⌦

= 40.

Figure 4.7. The minimum singular value �
min

as a function of Nr. The number
of frequencies N

⌦

= 40.
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Figure 4.8. The maximum singular value �
max

as a function of N
⌦

. The num-
ber of values on the real axis Nr = 100. The dashed line is a linear fit of
log (�

max

(N
⌦

)).
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Figure 4.9. The minimum singular value �
min

as a function of N
⌦

. The number
of values on the real axis Nr = 100.

4.2 Second Order Taylor Expansion

The utilization of the first order Taylor expansion did not provide an expla-
nation as to why there is a breaking point in Fig. 4.2. We will instead try
to explain this behavior using the second order. Let us first define �F for
the second order Taylor expansion. We do this by adding some noise � to
G, plug the result into F and apply Taylor expansion like so:

F(G+ �) ⇡ F(G) +
@F(G)

@Gi
�i +

@2F(G)

@Gi@Gj
�i�j ,

F(G+ �) � F(G) ⇡ @F(G)

@Gi
�i +

@2F(G)

@Gi@Gj
�i�j ,

�F ⇡ @F(G)

@Gi
�i +

@2F(G)

@Gi@Gj
�i�j .

Calculating the second order term can be very computationally intense.
However, we expect the error to be dominated by noise projected into the
dominate eigenvector of J . Therefore we choose to numerically evaluate the
second order contribution in this direction by using �i = �(umax):

@2F(G)

@Gi@Gj
�i�j ⇡ F(G+ �umax) + F(G � �umax) � 2F(G) (4.3)



27 4. STABILITY OF THE ANALYTIC CONTINUATION

where �umax is the error with the same direction as for the eigenvector
corresponding to the singular value �max.

The second order approximation is plotted together with the exact error
in Fig. 4.10 for N⌦ = 32, 52, 60. We see that there is a breaking point when
using the second order and the curve changes direction,

Figure 4.10. The second order approximation, together with the “exact” error, for
di↵erent values of N

⌦

.

We will now separate the mapping F into two parts and examine the
error of its di↵erent parts separately. The transformation from the imagi-
nary axis to the space ↵ of the Padé coe�cient is denoted by F1, and the
transformation from the space ↵ of the Padé coe�cient to the real axis is
F2. The errors of both F1 and F2 are plotted in Fig. 4.11 together with the
whole transformation F for di↵erent noise levels. We can see that the error
of F2 is much less than for F. Surprisingly, F1 has an error which is larger
than the error of F. Fig. 4.12 shows how many times greater the error of
F1 is compared to that of F. The di↵erence in precision between F1 and F
is not large enough to be able to explain the behavior of Fig. 4.1.
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Figure 4.11. The error �F for the whole transformation F, and the errors �F
1

and �F
2

for the di↵erent parts F
1

and F
2

of the analytic continuation, as
functions of the noise level �.

Figure 4.12. The ratio �F
1

/�F as a function of the noise level, for di↵erent N
⌦

.



5 Conclusions
As we have seen in Fig. 4.1 the analytic continuation using Padé approxi-
mation seems to be unstable for small noise levels. The Green’s function on
the real axis is highly sensitive to the locations of the poles, which explains
why a small increase of the noise leads to a much larger error of the out-
put. However, there is a certain threshold of the noise level, where adding
more noise no longer decreases the precision of the output. This is contrary
to what is predicted when computing the singular values of the Jacobian;
these are large and one would therefore expect non-physical results even for
relatively small noise.

The Jacobian can be described by the maximum singular value, �max,
and its corresponding eigenvectors. The Nr and N⌦ dependence of �max was
examined, and it was found that the singular value �max does not depend
on Nr but rather on the value of N⌦. We therefore conclude that one only
needs to consider the stability for di↵erent values of N⌦.

The breaking point in Fig. 4.1 can not be described by the second
order Taylor expansion of the transformation F. The second order Taylor
expansion can explain the linearity for small noise but at the breaking point
our approximation becomes even more unstable. The reason why the second
order expansion fails to describe the stability of the analytic continuation is
probably due to some non-linear behavior of the Padé method that reduces
the error.

By investigating the di↵erent parts of the analytic continuation one re-
alizes that the error of �F1 is higher than for �F, and the precision must
therefore be higher when using the analytic continuation than one would
expect at first. However the di↵erence is not large and probably does not
need to be taken into account.

We were not able to understand why there is a breaking point where the
analytic continuation becomes stable, and do not know how to investigate
it further.



Part II



6 Dynamical Mean Field
Theory

Materials such as iron, vanadium and their oxides, which have strongly in-
teracting electrons that are spatially confined in their orbits around the nu-
cleus, have properties that are hard to explain [4]. The correlation between
electrons makes it impossible to treat them independently. These materials
are instead described by a simplified Hamiltonian to take into account a few
relevant degrees of freedom. One model that will be used in this thesis is
the Hubbard model:

H =
X

ij,�

tijc
†
i�cj� + U

X

i

ni"nj#. (6.1)

The Hubbard model assumes interaction of electrons only when they are
located at the same lattice site i, with interaction energy U . The equation
also describes the kinetic energy of an electron with spin � hopping between
the orbits at lattice sites i and j, and this energy is denoted tij .

In the Hubbard model only local interactions are considered, and evalu-
ating the self-energy exactly is therefore a fairly di�cult task. The problem
is simplified through an expansion in the coordinate number z (the num-
ber of neighbors) when scaling the kinetic energy as t ! t/

p
z , and this

procedure will make DMFT exact in the limit z ! 1. The approximation
captures many features of physics in finite dimensions. The scaling causes
the total self-energy to be independent of the momentum [14]:

⌃(k, i!n) �! ⌃(i!n) as z ! 1.

Using the fact thatG(~R,i!n) =
P

k e
ik ~RG(k,i!n) the local interacting Green’s

function GL can now be calculated as

GL(i!n) =

Z
d"

⇢0(")

i!n � "+ µ � ⌃(i!n)
,

where ⇢0(") is the non-interacting density of states and where the Green’s
function in (2.8) is used.

The lattice problem is mapped to an auxiliary impurity problem (See
Fig. 6.1). The local lattice Green’s function GL(i!n), the bath Green’s
function G0(i!) and the lattice self-energy ⌃(i!) are related by

G�1
0 = G�1

L + ⌃. (6.2)
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Figure 6.1. An impurity connected with a bath with Green’s function G
0

.

It is important to stress that (6.2) is not the Dyson equation discussed in
Chapter 2; it is an additional relation that relates the lattice problem with
an impurity problem.

The derivation of the impurity problem and the self-consistency condition
is done by first separating the lattice action S into three parts; a lattice with
cavity S(0), the cavity S0 and its connection, �S, to the bath [15]:

S = S(0) + S0 +�S.

This is also visualized in Fig. 6.2. The derivation of (6.2) is out of scope of
this thesis.

Figure 6.2. The action of the lattice problem is divided into three parts.

Now that the e↵ective bath Green’s function G0 of the impurity problem
has been derived, the next step is to compute the local interacting Green’s
function GI of the impurity, which takes the following form:

GI��0 =

Z �

0
d⌧ei!n⌧ hc�(⌧)c†�0(0)iSeff [G0

], (6.3)

where the e↵ective action of the impurity is

Seff [G0] =

Z �

0
d⌧Un"(⌧)n#(⌧)�

�
Z �

0
d⌧

Z �

0
d⌧ 0
X

�

c†�(⌧)G
�1
0 (⌧ � ⌧ 0)c�.

The first term Un"(⌧)n#(⌧) is the local interaction of the lattice.
There are many ways to solve (6.3). Some methods use renormalization

group techniques, e.g. numerical renormalization group (NRG) and exact
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diagonalization (ED), while some use methods based on the stochastic sam-
pling of quantum and thermal averages, e.g. Hirsch-Fye QMC algorithm and
continuous-time (CT) QMC [2],[16]. In this thesis we will focus on exact di-
agonalization. The first step in exact diagonalization is to map the known
impurity bath Green’s function G0 into the Anderson model formulation.
Thus, an introduction to the Anderson model is needed.

6.1 Anderson Model Mapping

The Anderson model was introduced 1961 by P.W. Anderson [17] and is an
e↵ective model for magnetic impurities in metallic systems. The Anderson
model describes one impurity site with energy "0 and interaction energy U .
The impurity site is coupled by a hybridization Vk to non-interacting sites
with the energy "k (See Fig. 6.3). The Anderson Hamiltonian takes the
form

HAM =
X

�

("0 � µ)c†�c� + Un"n# +
1X

�,k=1

⇣
"kc

†
k�ck� + Vk(c

†
�ck� + c†k�c�)

⌘
,

(6.4)

where c†� and c� are the creation and annihilation operators, respectively, at
the impurity site. k is a quantum label of the momentum.

Figure 6.3. The Anderson model describes an impurity site which is connected to
infinitely many non-interacting electron systems.

When using cavity construction, as in the previous chapter, one obtains
a relation between impurity bath Green’s function and the Anderson model
formulation given by

G�1
0 (i!n) = i!n + µ � "0 � �(i!n), (6.5)

where �(i!n) is the hybridization function,

�(i!n) =
1X

k=1

|Vk|2

i!n � "k
.
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Note that when one sums over an infinite number of sites one has an exact
mapping between the auxiliary impurity problem and the Anderson model.
This is used in the next chapter when applying exact diagonalization to
calculate the interacting Green’s function GI in (6.3).

6.2 Exact Diagonalization

In 1993, M. Ca↵arel and W. Krauth [18] published an article about an exact
diagonalization (ED) method to calculate an infinite dimensional Hubbard
model by using exact diagonalization of an Anderson model with a finite
number of sites. Truncating the Anderson model (6.4) to a finite number of
sites gives the Hamiltonian that is used in ED:

HED = ("0 � µ)
X

�

c†�c� + Un"n# +
nX

�,i=1

⇣
Vi(c

†
i�c� + h.c.) + "ic

†
�c�

⌘
.

This means that the non-interacting Green’s function of the Hubbard model
can be approximated through (6.5) to obtain

G0(i!n) ⇡ GED
0 (i!n) =

 
i!n � "0 + µ �

nX

i=1

Vi

i!n � "i

!�1

,

where n is the number of sites excluding the local interaction site. However,
since a finite dimensional Anderson model can not describe the impurity
bath Green’s function G0 exactly, one finds the parameters "i and Vi by
minimizing

�2 =
1

nmax

n
maxX

n=0

|G�1
0 � (GED

0 )�1|2.

When all parameters are determined we know the full Hamiltonian. To be
able to calculate the interaction Green’s function it is necessary to find the
eigenvalues and eigenvectors of the Hamiltonian. We then write the cre-
ation and annihilation operators, and thereby the Hamiltonian, in terms of
matrices. Because of the large size of the Hamiltonian we will use block-
diagonalization to reduce the dimensions. Each block will be small enough
in order to make the computer simulations reasonably fast. The block-
diagonalization is done using symmetry properties. It is known that the
particle number, the spin sz, and the total spin s2 of the system are con-
served, which can be confirmed by computing [H,N̂ ] = 0, [H,Ŝz] = 0 and

[H,Ŝ2] = 0. One can project the Hamiltonian into smaller blocks by using
projectory matrices of the quantum numbers n, sz and s2. The eigenvalues
of each block are the possible energies of a system with quantum numbers
ni, szi and s2i .
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When all eigenstates and eigenvalues are determined the impurity Green’s
function GI(z) is given by

GI� =
1

Z

X

µ⌫

hµ|c†�|⌫i
z + Eµ � E⌫

⇣
E��E⌫ + E��Eµ

⌘
, (6.6)

which is the Lehman spectral representation. The partition function in (6.6)
can be evaluated as

Z = Tr
h
E��H

i
.

In this thesis only the case of zero temperature is considered. The terms
that are non-zero in (6.6) contain the ground state, µ̃, and are therefore
given by

GI� =
1

ndeg

X

µ̃⌫

 
hµ̃|c†�|⌫i

z + Eµ̃ � E⌫
+

h⌫|c†�|µ̃i
z + E⌫ � Eµ̃

!
, (6.7)

where ndeg is the degeneracy of the ground state.
Equation (6.7) is used in exact diagonalization in order to compute the

interaction Green’s function given in (6.3). The formula was derived by
applying Anderson mapping and the definition of Lehman spectral repre-
sentation. From GI the self-energy of impurity can be determined using the
relation

⌃I = G�1
0 � G�1

I .

We have now covered the equations that are needed to solve an interact-
ing many-body system when using ED. The next chapter will work as an
overview of the DMFT algorithm.

6.3 Self-Consistent Equations

In this section the set of equations which DMFT consists of will be listed
and then the self-consistent DMFT solution is discussed.

The algorithm of how to calculate the self-energy ⌃I of the impurity is
given below.

1. Given an initial guess of the lattice self-energy ⌃L(i!n) and the known
non-interacting density of states ⇢(0)("), one can calculate the lattice
Green’s function GL using the relation

GL(i!n) =

Z
d"

⇢(0)(")

i!n � "+ µ � ⌃L(i!n)
.

2. The relation between local lattice Green’s function and ⌃L in terms of
the impurity bath Green’s function is given by

G0 =
�
G�1

L + ⌃L

��1
.
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3. The local impurity Green’s function

GI��0(i!n) =

Z �

0
d⌧ei!n⌧ hc�(⌧)c�0(0)iSeff [G0

].

GI��0 is in our case obtained using the ED algorithm.

4. The sought self-energy of the impurity is now found by the relation

⌃I(i!N ) = G�1
0 (i!n) � G�1

I (i!n).

To summarize these steps we define a function F : ⌃L 7! ⌃I (See Fig. 6.4).
The fixed point solutions of the self-energies give the self-consistent DMFT
solution,

F (⌃⇤) = ⌃⇤.

Figure 6.4. A schematic representation of the self-consistent equations, when
using ED as an impurity solver.



7 Distributional Exact
Diagonalization

The advantage of using distributional exact diagonalization (DistED) is that
it enables calculation of the spectral function of a system without the need
of an analytic continuation. This chapter explains the DistED scheme using
what we already know about exact diagonalization.

DistED uses the ED algorithms, but instead of the fitting procedure
used when minimizing the di↵erence between the impurity bath Green’s
function and the Anderson Green’s function, the local spectral function is
used as a probability distribution for the sampling to find the parameters
in the Anderson Hamiltonian. This is done in detail for the case of a Mott
insulator which means an odd number of sites will be assumed. First we
utilize the fact that for known coe�cients {ai,bi} there are unique solutions
of the parameters {"i, Vi} of the equation,

 
z � "0 + µ �

n�1X

i=1

Vi

z � "i

!�1

=
nX

j=1

aj
z � bj

.

Thus the first step is to determine the coe�cients {ai,bi} of the Green’s
function on the form

G⌫
0(z) =

nX

i=1

a⌫i
z � b⌫i

, (7.1)

where {bi}ni=1 are real values and the residue is normalized as
P

j a
⌫
j = 1 for

all ⌫. In other words, the coe�cients {"i, Vi} are found by determining the
poles and residues of G⌫

0(z).
The first (n � 1)/2 coe�cients of {bi}ni=1 in (7.1) are chosen randomly

from a distribution represented by Im[G0]/⇡ = Im[(G�1
L + ⌃)�1]/⇡. The

other coe�cients are then determined to satisfy the symmetry G⌫
0 (one pole

at z = 0). The Green’s function is then given by

G⌫
0(z) =

(n�1)/2X

i=1

a⌫i
z � b⌫i

+
a⌫(n+1)/2

z
+

(n�1)/2X

i=1

a⌫i
z + b⌫i

. (7.2)

To find relevant values of the residues one has to have in mind that the
residue of the pole at z = 0 is much larger than residues of other poles. So
firstly, we explicitly set the residue a⌫(n+1)/2 to a nonrandom value according



38 7. DISTRIBUTIONAL EXACT DIAGONALIZATION

to the weight at z = 0 in the spectral function:

a⌫(n+1)/2 =

Z �

��

1

⇡
Im[G0(!)]d!,

where � in this case is a small number so that only the weight of the pole at
z = 0 is included. The other residues are randomly chosen so that

a⌫(n+1)/2 +

(n�1)/2X

i=1

2a⌫i = 1,

and this is because
P(n�1)/2

i=1 2a⌫i ⌧ a⌫(n+1)/2, i.e. these residues are not as
significant as the residue of the pole at z = 0 when generating the Green’s
function.

Once the coe�cients {a⌫i }ni=1 and {b⌫i }ni=1 are determined one can map

G⌫
0(z) to the Green’s function GA,⌫

0 = 1/(z � "⌫0 + µ �
Pn�1

i=1
V ⌫
i

z�"⌫i
). The

parameters "⌫i and V ⌫
i are obtained by using

• "⌫0 = �
P

j a
⌫
j b

⌫
j ,

• the solution to the equation G⌫
0(z = "i) = 0,

• V ⌫
i =

⇣
�dG⌫

0

dz |"⌫i
⌘�1/2

.

When all parameters in the full HamiltonianH = H0�µ
P

� c
†
�c�+Uc†"c

†
#c"c#

are determined, the same algorithm as in the ED method (explained in the

previous chapter) is used to obtain ⌃⌫ � µ =
�
(G⌫

0)
�1 � (G⌫

I )
�1
��1

. The
total self-energy can be approximated by the relation [3]

⌃tot � µ ⇡ 1

N

NX

⌫=1

(⌃⌫ � µ) =
1

N

NX

⌫=1

�
(G⌫

0)
�1 � (G⌫

I )
�1
��1

. (7.3)

The evaluated self-energy is used to calculate a new GL that will be the new
input in the DMFT scheme, as illustrated in 6.4. When a converged self-
energy ⌃⇤ is found the sought self-energy of the real axis has been computed.
Other than the self-energy it is also relevant to consider the density of states,
which can be expressed as

A(!) = � 1

⇡
Im[GL] = � 1

⇡
Im

"Z
d✏

⇢(0)(✏)

i!n � ✏+ µ � ⌃tot

#
.

Before applying DistED to a Mott insulator we will discuss the Mott
metal-insulator transition (MIT).
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7.1 Mott Metal-Insulator Transition

In the beginning of the 20th century the band theory was very successful in
describing electrical properties of metals. It was found that there are some
materials (with odd number of electrons per unit cell) which should, accord-
ing to band theory, be conductors, but in reality proved to be insulators.

N. Mott and R. Peierls [5] predicted these materials to be insulators
due to the strong Coulomb interactions between the electrons. This on-site
Coulomb interaction causes a Mott metal-insulator transition (MIT).

A reason for the MIT to occur is that as the kinetic energy increases,
the electron is more likely to move between di↵erent sites, which can lead
to double occupied sites. However, if the interaction energy U is large, this
behavior is largely prevented and may reduce the total energy of the system
by localizing the electrons.

Figure 7.1. An illustration of a metal-insulator transition.

If we assume a small interaction energy U , then our spectral function
A(!) still resembles that of free electrons, which for the Mott insulator
consists of two “Hubbard bands” at ±U/2 (the bottom picture in Fig. 7.1).
When decreasing U below a lower critical value the gap between the Hubbard
bands vanishes (the top picture in Fig. 7.1). This describes a transition from
an insulator to a metal.

At intermediate values of U the spectral function still has Hubbard bands
but also a third peak at small energies, ! ⇡ 0.

7.2 DistED Calculation of Mott Insulator

A half-filled Mott insulator will now be analysed using DistED with three
sites (n = 3). The total self-energy and the density of states are calculated
with the chemical potential µ = U/2 and with the interaction energy U = 4
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and U = 10. The number of samples ⌫ has to be large for the self-consistency
equations to converge. We set ⌫ = 50 000 iterations.

�4 �3 �2 �1 0 1 2 3 4
�

�1.0

�0.5

0.0

0.5

1.0

G0

GI

Figure 7.2. The impurity Green’s function together with the non-interaction
Green’s function when U = 4.

Figure 7.3. The imaginary and real part of the self-energy for U = 4.

To compute the impurity self-energy ⌃ we need the Green’s functions GI

and G0, which are plotted in Fig. 7.2. GI has many more roots compared
to the non-interacting Green’s function G0, and it is zero whenever G0 is.
We know that the impurity self-energy ⌃ has poles at points where GI is
zero and G0 non-zero.

Firstly we investigate the Mott insulator when U = 4. Fig. 7.3 illus-
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Figure 7.4. The imaginary and real part of the self-energy using DRMG. Excerpted
from M. Karski et al. [19], reproduced with permission.

trates the real and imaginary part of the self-energy, ⌃, when U = 4. The
imaginary part of the self-energy is symmetric around ! = 0 and is strictly
less than zero. One also notices that the residue of the pole at ! = 0 is large.
These features are the consequence of having an insulating system with a
symmetric G⌫

0 and large weight at ! = 0; similar results are shown for
the same insulating system and with density-matrix renormalization group
(DMRG) as an impurity solver [19] (See Fig. 7.4). What is interesting about
Fig. 7.3 is the peaks at ! ⇡ ±1, and as seen in Fig. 7.5 the same behavior
appears for the density of states.

The density of states describes an insulator with two Hubbard bands lo-
cated at ±U/2, which is similar to the Hubbard bands in Fig. 7.1. However,
in this case there are peaks in addition to the Hubbard bands. These results
are intriguing since this kind of structure will not likely be found for some
impurity solvers that require an analytic continuation, such as Maximum
Entropy (MaxEnt), which assumes a smoother function of the self-energy.
Some oscillations can also be seen in Fig. 7.5 due to noise.

In Fig. 7.6 the same system (U = 4 and � = 20)1 is calculated with

1For detailed information about maxEnt and the parameter � see [20].
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Figure 7.5. The density of states for an insulator with U = 4.

QMC as an impurity solver, and the MaxEnt method is used for the analytic
continuation. This result shows a spectral function that is similar to Fig.
7.5; the width and height of the Hubbard bands are the same. The di↵erence
is that the peaks in Fig. 7.5 are not found by using the MaxEnt method.

Figure 7.6. The spectral function calculated with the maximum entropy method for
U = 4 and � = 20. The graph is generated by Johan Schött, and reproduced
here with permission.

The second case that is treated in this thesis concerns an insulator with
the interaction energy U = 10. Compared to U = 4, one notices that
the weight of the imaginary part of the self-energy at ! = 0 is larger for
U = 10, as shown in Fig. 7.7. This is expected because having larger values
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Figure 7.7. The imaginary and real part of the self-energy for U = 10.

of U leads to an increasing number of localized electrons. The density of
states when the interaction energy U = 10 is plotted in Fig. 7.8. Here
the Hubbard bands are located further away from each other compared to
the case of U = 4. However, in both cases the Hubbard bands are located
around ! = ±U/2. The results shown in Fig. 7.8 seem reasonable, due to
the fact that the width of the Hubbard bands are approximately two and
the integration over all frequencies is equal to one. The density of states
for U = 10 does not have the peaks that were shown for U = 4. The exact
result is known in the limit of large U , and does not have any peaks.

Figure 7.8. The density of states for an insulator with U = 10.



8 Conclusions
The distributional exact diagonalization formalism has been used to com-
pute the analytic self-energy of a three-site Mott insulator. Initial studies
using impurity solvers have shown that DistED gives good results for Mott
insulators. The real part and imaginary part of the self-energy have simi-
lar behavior when calculated by either DistED or DMRG, and the density
of states for interaction energy U = 4 has similar behavior as when using
MaxEnt: the Hubbard bands are at ! = ±U/2. However, the peaks that
appear in the density of states when using DistED do not appear when using
MaxEnt (See Fig. 7.6).

We are not able to explain why the peaks occur, but it is interesting that
this behavior is predicted by DistED whereas some methods using analytic
continuation cannot detect them.

When U = 10, the Hubbard bands are located further apart from each
other (at ! = ±U/2). It can also be noted that when the interaction energy
is su�ciently large (as is the case when U = 10), the peaks that appeared
for U = 4 are no longer present. In this case only two smooth Hubbard
bands can be seen.
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