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Abstract

In the current thesis we investigate phonon behaviour in the BaFe2As2
crystal and the effect of anharmonicity in the interionic potential on the lat-
tice. In the first part we treat the potential as harmonic and calculate the
phonon spectrum and density of states for the crystal. The crystal has a unit
cell with 5 ions in a body-centered tetragonal structure and correspondingly
3 acoustic and 12 optical phonon branches. We then consider anharmonicity
by including a small cubic term in the potential. This introduces the phe-
nomenon of lattice expansion, which we treat by using a variational method.
This is demonstrated in the second part of the thesis for one-dimensional
and three-dimensional monoatomic lattices, and then for the full problem of
the BaFe2As2 crystal. The last part deals with the isotope substitution effect,
where we alter the mass of iron to see how much the expansion changes,
which should reflect how the actual lattice constants change due to isotope
substitution. Experimental measurements of the 57Fe to 54Fe substitution
showed a negligible expansion in the ab-plane and a δc = (3 ± 1) · 10−3 Å
expansion in the c-plane [1]. This is in very good agreement with our result
of δa = −1.13 · 10−5 Å and δc = 1.73 · 10−3 Å.

Keywords: phonons, barium iron arsenic, anharmonic, lattice expansion,
isotope substitution, isotope effect

5



Contents

1 Introduction 7

2 Harmonic interactions 8
2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Derivation of Hooke’s Law in 3 dimensions . . . . . . . . . . 8
2.1.2 Applying the Classical Theory . . . . . . . . . . . . . . . . . 10

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Anharmonic interactions and lattice expansion 14
3.1 One dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Three dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Three dimensions and a unit cell . . . . . . . . . . . . . . . . . . . . 24
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Isotope effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Conclusions 32

A Published data on BaFe2As2 35

B Quantum-mechanical treatment of a harmonic problem 36

C Pseudocode 37
C.1 Harmonic calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 37
C.2 Anharmonic calculations . . . . . . . . . . . . . . . . . . . . . . . . . 38

6



1 Introduction

Iron pnictide superconductors were first discovered in 2008, when Kamihara et
al. [2] reported that F-doped LaFeAsO superconducts at 26 K. This sparked con-
siderable interest among physicists, and since then similar superconducting ma-
terials have been found [3, 4, 5]. LaFeAsO now constitutes one of the iron-based
superconductor families, namely the 1111 family, which also holds the record of
Tc (critical temperature) is high as 55 K, which is only surpassed by cuprate su-
perconductors [6, 3]. The name 1111 comes from the stoichiometry of the parental
prototype. Other families currently known are the 122 BaFe2As2 family, the 111
LiFeAs family and the 11 FeSe family.

In all above-mentioned iron-based materials the key feature which makes
them superconduct is the FeAs layer (or FeSe layer in case of the 11 family) with a
tetragonal structure at room temperature. These layers are separated in space by
a different layer. This structure is very similar to cuprates with, however, some
differences — the FeAs layer is not purely planar like the CuO2 layer, for example
[4, 5, 7, 8].

The superconductivity mechanism itself is not yet entirely understood. While
some calculations indicate than it cannot be explained by the conventional electron-
phonon coupling [9], others say that it may still play an important role [10, 7].
In this thesis we present phonon calculations for BaFe2As2 crystal. While mag-
netism plays a significant role in iron-based superconductors [7], we will not dis-
cuss magnetic effects here.

The study itself is split into two parts. First, we calculate phonon modes
assuming harmonic interactions within the crystal. The theoretical framework
is fairly straightforward and has been outlined in several books [11, 12]. After
acquiring frequencies and polarization vectors of the phonons, we use them in
the second part of the thesis, where we use the variational method described by
Feynman [13] to see how much the lattice constants change when anharmonic
interactions are included. The lattice expansion is a purely quantum-mechanical
effect, due to phonon zero-point motion.
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2 Harmonic interactions

2.1 Method

To solve the harmonic problem we employ the Classical Theory described in [11].
Interionic interactions are modelled as simple springs and we use Newtonian
mechanics. First, we need to extend Hooke’s Law to 3 dimensions.

2.1.1 Derivation of Hooke’s Law in 3 dimensions

r

R

u’(R’)

u(R)

r’

R’

Figure 1: Vector diagram for a general lattice. Ion 1 (red) in the unit cell with the
absolute coordinate R deviates from the equilibrium position by vector u(R), while ion
2 (green) in the unit cell with the absolute coordinate R′ deviates from the equilibrium
position by vector u′(R′). Unit cell boundaries are not to scale but only for illustration.

Consider the situation depicted on Fig. 1. Ion 1 belongs to the unit cell with
the absolute coordinate R and ion 2 belongs to the unit cell with the absolute coor-
dinate R’. When both ions are in the equilibrium position, the net force between
them is zero and the distance between them can be described by a relative vector
r. Assume now that ion 1 deviates from equilibrium by u(R) and ion 2 does so
by u’(R’). We can then denote the displacement of ion 1 relative to ion 2 by r’
— the force on ion 1 by ion 2 will then be proportional to the difference of the
magnitudes of r’ and r, and directed antiparallel to r’ in case the former is larger
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than the latter. This can be expressed as

F(R) = −K
[

r’
|r’| (|r’| − |r|)

]
= −K

[
r’
(

1− |r||r’|

)]
(1)

where K is the force constant.
We can now start calculating vector magnitudes:

(2a)r′ = u(R)−
(
r + u′(R′)

)
(2b)|r′|2 = |u(R)|2 + |r + u′(R′)|2 − 2

(
r + u′(R′)

)
· u(R)

= |u(R)|2 + |r|2 + |u′(R′)|2 + 2r · u′(R′)− 2r · u(R)− 2u(R) · u′(R′)

We are interested in the first approximation, so we will discard all terms non-
linear in deviation functions u and u′:

|r’|
|r| =

(
1 +

2r · u’(R’)
|r|2 − 2r · u(R)

|r|2

)1/2

(3)

and therefore
|r|
|r’| =

(
1 +

2r · u’(R’)
|r|2 − 2r · u(R)

|r|2

)−1/2

(4)

Since deviation functions are very small compared to the distance between the
ions, we reduce this equation using (1 + x)α = 1 + αx + O(x2):

|r|
|r’| = 1− r · u’(R’)

|r|2 +
r · u(R)
|r|2 (5)

Inserting this into the force equation (1) we obtain

(6)
F(R) = −K

[
r’
(

1− |r||r’|

)]
= −K

[(
u(R)− u’(R’)− r

)(
r · u’(R’)
|r|2 − r · u(R)

|r|2

)]
Dropping non-linear terms again,

(7)
F(R) = −K

[
r
(

r · u(R)
|r|2 − r · u’(R’)

|r|2

)]
= −K

[
r
|r|

(
r
|r| · (u(R)− u’(R’))

)]
9



Equation (7) is our final result — it describes the force on an ion in one unit
cell by a different ion in another unit cell.

To solve a system of such equations it is favorable to express the dot product
as a matrix operation to be able to explicitly separate coefficients of deviation
functions. By assuming a column vector and using a · b = aTb we can rewrite
equation (7) as

F(R) = −KR̃ [u(R)− u’(R’)] (8)

where

R̃ =
r
|r|

(
r
|r|

)T
(9)

is a matrix.

2.1.2 Applying the Classical Theory

Now, when the form of Hooke’s Law is established, we can apply the Classi-
cal Theory to our system. Assume deviation functions of the form u(R, t) =

1√
m ei(k·R−ωt)ε which represents simple plane waves, ε is the polarization vec-

tor that describes the direction in which the ions move . The mass coefficient
is necessary to weigh the equation to make the solution matrix Hermitian. Using
Newton’s 2nd Law we obtain

(10a)mü = −KR̃ [u(R)− u’(R’)]

(10b)
√

mω2ei(k·R−ωt)ε = KR̃
[

1√
m

ei(k·R−ωt)ε− 1√
m′

ei(k·R’−ωt)ε′
]

(10c)ω2ε = KR̃
1√
m

[
1√
m
ε− 1√

m′
eik·(R’−R)ε′

]

Now, to find out ω we only need to write out the equation (10c) for each ion
in the unit cell and its interacting neighbors, and solve the obtained system of
equations. Considering a unit cell with p ions, we will have p vector equations of
the form

ω2εi =
p

∑
j=1

Mijεj (11)
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for ith of p ions, where Mij is a certain matrix. Denote now n as a certain neighbor
that the ion i interacts with. Putting equations (11) together in one big matrix
equation produces

ω2ε = Mε (12)
ω =

√
eig(M) (13)

where

M(i, j) = Mij =


∑
∀n

1
mi

KinR̃in − ∑
εn=εi

1
mi

KinR̃ineik·(Rn−Ri) i = j

− ∑
εn=εj

1√
mi

1√
mn

KinR̃ineik·(Rn−Ri) i 6= j
(14)

This means that summations in the diagonal entries of the matrix M go over all
neighbors of i and neighbors with the deviation function ui (and consequently the
polarization vector εi), while the summations in the non-diagonal entries go only
over neighbors with the deviation function uj. Terms like Kin denote constants
which correspond to the specific interaction between ions i and n, e.g. the spring
constant K and the displacement matrix R̃.

As mentioned above, matrix M is Hermitian, because we included mass co-
efficients in the expressions of deviation functions. It will therefore yield real
eigenvalues. Since we have p vector equations in R3, the size of matrix M will be
3p× 3p and will thus yield 3p solutions of ω for each k.

We choose k-vectors according to the Born-von Karman periodic boundary
condition, requiring that u(R + Niai) = u(R) for each of the three primitive vectors
ai. which means k-vectors are restricted to the form

k =
n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3 (15)

where ni are integers, Ni — number of unit cells in each dimension, and bi — the
reciprocal lattice vectors. Since only k-vectors within a single primitive cell of the
reciprocal lattice will yield distinct solutions (eiK·R ≡ 1, where K is a reciprocal
lattice vector), integers ni only go up to Ni and there will be N = N1N2N3 non-
equivalent values of k.
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2.2 Results

Since the key feature of the crystal is the FeAs plane, our method was first applied
to it alone (Fig. 2(a)). The angle of incline is taken to be 35◦ [14, 15]. It is assumed
that each Fe ion interacts with its 8 nearest neighbors (4 As and 4 Fe), while each
As ion interacts with 4 nearest Fe ions and 4 nearest coplanar As ions. This is just
enough to adequately describe the phonon dispersion and not run into unphysi-
cal zero energy modes problem. The force constants are

(a) Iron arsenic plane. The material is the reproduc-

tion from J. Phys. Soc. Jpn. 78, 062001 (2009), K.

Ishida, Yu. Nakai and H. Hosono. Copyright (2009) by

the Physical Society of Japan.

(b) Barium iron arsenic crystal. Reprinted

figure with permission from Rotter M., Tegel M. and

Johrendt D., Phys. Rev. Lett. 101, 107006 (2008).

Copyright (2008) by the American Physical Society.

<http://link.aps.org/doi/10.1103/PhysRevLett.101.107006>

Figure 2: The structures of FeAs plane and BaFe2As2 crystal.
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Pair Force constant, eV/Å2 [14]
Fe-As 8.7
Fe-Fe 2.61
As-As 1.74

The lattice constant is taken to be a = 3.96 Å in both directions [10]. Fig. ??
shows acquired normal modes along (ξ,0,0) and Fig. ?? — along (π

a ,ξ,0).
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Figure 3: Phonon dispersion curves for the FeAs plane along reduced k-vectors (ξ,0,0)
(left) and ( π

a ,ξ,0) (right).

Same procedure was then applied to the complete BaFe2As2 crystal (Fig.
2(b)). Additional force which was included in the model is the interaction of
Ba ion with its 8 closest As neighbors. Force constants used were different from
the ones from the previous case and were taken to be

Pair Force constant, eV/Å2 [6]
Fe-As 4.37
Fe-Fe 8.11 · 10−1

As-As 2.5 · 10−1

Ba-As 5 · 10−1

The c-axis lattice constant was taken to be c = 13 Å [10]. Fig. 4 shows some
phonon dispersion curves of BaFe2As2 together with the calculated phonon den-
sity of states. The discretization value for DOS was chosen as 1 µeV.

For comparison, some published data is given in Appendix A.
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Figure 4: Left: Phonon dispersion of BaFe2As2. Right: Phonon density of states of
BaFe2As2.

3 Anharmonic interactions and lattice expansion

When anharmonicity of the interactions is considered, the potential addition-
ally includes third and higher order terms. When this happens, lattice constants
change to fit the anharmonic potential. Lattice expansion is a quantum-mechanical
effect which exists even at zero temperature due to zero-point motion (Fig. 5),
and we need to treat this problem quantum-mechanically (see Appendix B for
the quantum-mechanical solution of a harmonic problem).

We follow the variational method outlined by Feynman [13]. Since a cubic
potential cannot be diagonalized, we introduce a small variational parameter δ
and compare the cubic potential with the diagonalizable harmonic potential. We
then want the average of the difference between them to be minimal. To calculate
this quantity, we need the energy spectrum of the harmonic potential. We can
then differentiate the average with respect to δ to find δ that minimizes it.

We start with the one-dimensional case of identical particles, continue to the
three-dimensional case of identical particles, then finally develop full theory for
three dimensions and a unit cell, and apply it to the BaFe2As2 crystal.
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Figure 5: Potential shift when considering an anharmonic potential. Dashed curve
represents harmonic potential, solid curve represents anharmonic potential. a shows the
shift in the average. Source: Statistical mechanics: a set of lectures / R.P. Feynman
[13]

3.1 One dimension

To begin, consider a one-dimensional chain of identical particles. The anharmonic
potential energy of the chain can be written as

V = ∑
j

K
2

(rj+1 − rj − a)2 +
G
6

(rj+1 − rj − a)3 (16)

Here, a is the lattice constant and r represents absolute particle coordinates. Our
goal is to compare it to the harmonic potential V0 = ∑j

K
2 (rj+1 − rj − (a + δ))2 and

find out δ, which makes the difference between them minimal.
First, we make the transformation

rj = j(a + δ) + xj (17)
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where xj is now a quantum-mechanical position operator which represents par-
ticle deviation from equilibrium, to obtain

(18a)V = ∑
j

K
2

(xj+1 − xj + δ)2 +
G
6

(xj+1 − xj + δ)3

(18b)V0 = ∑
j

K
2

(xj+1 − xj)2

We will now look for the minimum of 〈V −V0〉:

〈V − V0〉 =

〈
∑

j

(
K
2

(
(xj+1 − xj + δ)2 − (xj+1 − xj)2

)
+

G
6
(
xj+1 − xj + δ

)3)〉

=

〈
∑

j

((
K
2

δ2 +
G
6

δ3
)

+
(

Kδ +
G
2

δ2
) (

xj+1 − xj
)

+
G
2

δ(xj+1 − xj)2 +
G
6

(xj+1 − xj)3
)〉

= N
(

K
2

δ2 +
G
6

δ3
)

+
(

Kδ +
G
2

δ2
)〈

∑
j

(
xj+1 − xj

)〉

+
G
2

δ

〈
∑

j

(
xj+1 − xj

)2〉 +
G
6

〈
∑

j

(
xj+1 − xj

)3〉
(19)

Introducing the discrete Fourier transform (where k is in units of a)

xj =
1√
N

∑
k

eikjxk (20)

we see that
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(21a)∑
j

(
xj+1 − xj

)
=

1√
N

∑
k

(
(eik − 1)xk ∑

j
eikj

)
= 0

(21b)∑
j

(
xj+1 − xj

)2 = ∑
k

2 (1− cos k) xkx−k

(21c)∑
j

(
xj+1 − xj

)3 =
1√
N

∑
k,k′

(
eik − 1

) (
eik′ − 1

) (
e−ik−ik′ − 1

)
xkxk′x−k−k′

since ∑j eikj = Nδk,0 (δ with subscripts is the Kronecker delta). We then introduce
ladder operators

xk =

√
h̄

2mωk

(
a†
−k + ak

)
(22)

where ωk =
√

2(1− cos k) K
m = ω

√
K
m are frequencies obtained by solving the

harmonic problem, to get

(23)

〈
∑

j

(
xj+1 − xj

)2〉 = ∑
k

h̄
mωk

(1− cos k)
(〈

a†
−ka†

k

〉
+ 〈aka−k〉 + 2

〈
a†

k ak

〉
+ 1
)

= ∑
k

h̄
mωk

(1− cos k)
(

2
〈

a†
k ak

〉
+ 1
)

= ∑
k

h̄
mωk

(1− cos k)
(

2
eβh̄ωk − 1

+ 1
)

= ∑
k

h̄
mωk

(1− cos k) coth
1
2

βh̄ωk

=
h̄√
Km

∑
k

1
ω

(1− cos k) coth
ω

T

=
h̄√
Km

A

and
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〈
∑

j

(
xj+1 − xj

)3〉 =
1√
N

∑
k,k′

(
h̄

2m

)3/2 1
√

ωkωk′ω−k−k′

(
eik − 1

) (
eik′ − 1

) (
e−ik−ik′

− 1
) 〈(

a†
−k + ak

) (
a†
−k′ + ak′

) (
a†

k+k′ + a−k−k′
)〉

= 0
(24)

Here we have used the fact that the averages of all operators involved, except
a†

k ak, are zero, since the state they make is orthogonal to the original state1, and

set temperature T in units of h̄
√

K
m

2kB
. We therefore have

(25)〈V − V0〉 = N
(

K
2

δ2 +
G
6

δ3
)

+
1
2

Gh̄√
Km

Aδ

We assume that the cubic term is negligible and find the lattice expansion δ
for which 〈V −V0〉 is minimal:

(26a)
∂

∂δ
〈V − V0〉 = NKδ +

1
2

Gh̄√
Km

A = 0

(26b)δ = − 1
2N

LA

where L = G h̄√
K3m

and A is dimensionless. Constant L is the length parameter and
determines the scale of the problem.

3.2 Three dimensions

Similar to the one-dimensional case, we can now find the lattice expansion for
three dimensions. Consider first the case of simple cubic lattice of identical parti-
cles.

In Fig. 6, r is now a vector of the expanded lattice, r = r0 + δ(r0), where
r0 is a vector of the unexpanded lattice. Since we are interested in a uniform
expansion, δ(r0) has to reflect directional symmetry and proportionality, and can

1Recall that the average of an operator Â is 〈Â〉 = ∑n pn〈n|Â|n〉, where n is a certain state and
pn is the probability of that state.
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r

R

Q(R’)

Q(R)

r’ R’

Figure 6: Vector diagram for a lattice of identical particles. Particle in the unit cell
with the absolute coordinate R deviates from the equilibrium position by vector Q(R),
while another particle in the unit cell with the absolute coordinate R′ deviates from the
equilibrium position by vector Q(R′). Unit cell boundaries are not to scale but only for
illustration.

be expressed as δµ(r0) = cµr0µ, where cµ is a constant and µ represents x-, y- or
z-projection. Particle deviations are now expressed as Q(R).

In this case the potential can be approximated with the form

V = ∑
RR′

(
k(r)

2
(
|r′| − |r0|

)2 +
g(r)

6
(|r′| − |r0|)3

)
(27)

where k (not to be confused with the wave vector k) and g are force constants
which depend on a particular interaction. Since we assume that the force con-
stants don’t change with the expansion, we can set k(r) = k(r0) and g(r) = g(r0).
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We know that

(28)

|r′| =
∣∣R′ + Q(R′)− R−Q(R)

∣∣
=
∣∣r− (Q(R)−Q(R′)

)∣∣
=
∣∣r0 + δ(r0)−

(
Q(R)−Q(R′)

)∣∣
=
∣∣r0 −

(
Q(R)−Q(R′)− δ(r0)

)∣∣
= |r0| −

r0

|r0|
·
(
Q(R)−Q(R′)− δ(r0)

)
in the first approximation. Denoting Q = Q(R), Q′ = Q(R′) and δ = δ(r0) for
brevity, and using Einstein notation, we therefore obtain

(29)

V = ∑
RR′

(
k(r0)

2

(
r0

|r0|
·
(
Q−Q′ − δ

))2

− g(r0)
6

(
r0

|r0|
·
(
Q−Q′ − δ

))3
)

= ∑
RR′

(
k(r0)
2|r0|2

(
r0µ

(
Q−Q′ − δ

)
µ

)2
− g(r0)

6|r0|3
(

r0µ

(
Q−Q′ − δ

)
µ

)3)
= ∑

RR′

(
Kµν(r0)

2
(
Q−Q′ − δ

)
µ

(
Q−Q′ − δ

)
ν

−
Gµνσ(r0)

6
(
Q−Q′ − δ

)
µ

(
Q−Q′ − δ

)
ν

(
Q−Q′ − δ

)
σ

)

where we set Kµν(r0) =
k(r0)r0µr0ν

|r0|2
and Gµνσ(r0) =

g(r0)r0µr0νr0σ

|r0|3
(not a summation).

We can now compare V to an unperturbed harmonic potential

(30)V0 = ∑
RR′

Kµν(r0)
2

(
Q−Q′

)
µ

(
Q−Q′

)
ν

20



V − V0 = ∑
RR′

(
Kµν(r0)

2

((
Q−Q′ − δ

)
µ

(
Q−Q′ − δ

)
ν
−
(
Q−Q′

)
µ

(
Q−Q′

)
ν

)
−

Gµνσ(r0)
6

(
Q−Q′ − δ

)
µ

(
Q−Q′ − δ

)
ν

(
Q−Q′ − δ

)
σ

)
= ∑

RR′

Kµν(r0)
2

(
−δµ

(
Q−Q′

)
ν
− δν

(
Q−Q′

)
µ

+ δνδν

)
−

Gµνσ(r0)
6

((
Q−Q′

)
µ

(
Q−Q′

)
ν

(
Q−Q′

)
σ

+ δµδν

(
Q−Q′

)
σ

+ δνδσ

(
Q−Q′

)
µ

+ δµδσ

(
Q−Q′

)
ν
− δµ

(
Q−Q′

)
ν

(
Q−Q′

)
σ

− δν

(
Q−Q′

)
µ

(
Q−Q′

)
σ
− δσ

(
Q−Q′

)
µ

(
Q−Q′

)
ν
− δµδνδσ

)
(31)

As before, we use normal coordinates and ladder operator transformations:Q(R) = 1√
N ∑k eik·RQk

Qk = ∑λ

√
h̄

2mωkλ
εkλ

(
a†
−kλ + akλ

) (32)

(33)

Q(R)−Q(R′) =
1√
N

∑
k

(
eik·R − eik·R′

)
Qk

=
1√
N

∑
k

(
eik·R − eik·(R+r)

)
Qk

=
1√
N

∑
k

(
1− eik·r

)
eik·RQk

=
1√
N

∑
k,λ

(
1− eik·r

)
eik·R

√
h̄

2mωkλ
εkλ

(
a†
−kλ + akλ

)
Analogous to the one-dimensional case, we see that only even multiples of Q(R)−
Q(R′) yield non-zero averages. We can also neglect the cubic δµδνδσ term and ob-
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tain

(34)

〈V − V0〉 = ∑
RR′

(
Kµν(r0)

2
δµδν +

Gµνσ(r0)
6

(
δµ

〈 (
Q−Q′

)
ν

(
Q−Q′

)
σ

〉
+ δν

〈(
Q−Q′

)
µ

(
Q−Q′

)
σ

〉
+ δσ

〈(
Q−Q′

)
µ

(
Q−Q′

)
ν

〉))
= ∑

R,r

Kµν(r0)
2

δµδν + ∑
R,r

∑
k,k′ ,λ,λ′

1
N

Gµνσ(r0)
6

· 2 (1− cos k · r)
h̄

2m√ωkλωk′λ′
ei(k+k′)·R

〈(
a†
−kλ + akλ

) (
a†
−k′λ′

+ ak′λ′

)〉 (
δµεkλνεk′λ′σ + δνεkλµεk′λ′σ + δσεkλµεk′λ′ν

)
Since we know that ∑R ei(k+k′)·R = Nδk′ ,−k and

〈
a†

kλakλ′
〉

= δλ,λ′
〈

a†
kλakλ

〉
we can

rewrite this as

〈V − V0〉 = N ∑
r

Kµν(r0)
2

δµδν + ∑
r

∑
k,λ

Gµνσ(r0)
3

(1

− cos k · r)
h̄

2m
√

ωkλω−kλ
coth

1
2

βh̄ωkλ

(
δµεkλνε−kλσ + δνεkλµε−kλσ

+ δσεkλµε−kλν

)
(35)

We also know that ωk = ω−k and εk = ε∗−k, therefore

(36)

〈V − V0〉 = N ∑
r

Kµν(r0)
2

δµδν

+ ∑
r

∑
k,λ

Gµνσ(r0)
3

(1− cos k · r)
h̄

2mωkλ
coth

1
2

βh̄ωkλ

(
δµεkλνε∗kλσ

+ δνεkλµε∗kλσ + δσεkλµε∗kλν

)
We see here that no summation terms depend on vector r directly, which

means that we can replace the summation on r by the summation on r0 (and
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assume k-vectors generated from lattice vectors of the unexpanded lattice). The
set of vectors r0 depends on the interactions considered. Assume that each par-
ticle interacts with nearest and next-nearest neighbors, which results in total of
9 interactions per particle. In this case the magnitude of each component of δ
can only take one value, which leaves only the sign of the component variable:
δµ(r0) → −δµ(r0) when r0µ → −r0µ. Further, consider anharmonicity only in the
x direction, ranh = (a, 0, 0). Equation 36 reduces to

〈V − V0〉 = N ∑
r0

Kµν(r0)
2

δµδν

+ ∑
k,λ

Gxxx(ranh) (1− cos k · ranh)
h̄

2mωkλ
coth

(
1
2

βh̄ωkλ

)
εkλxε∗kλxδx

= N ∑
r0

Kµν(r0)
2

δµδν + Aδx

(37)

where A is a constant for a given temperature. Again, values of ω and ε are
obtained by solving the harmonic problem.

To find out δ we now equate the derivatives of 〈V −V0〉 to zero:
∂

∂δx
〈V −V0〉 = ∑r

(
Kxxδx + Kxyδy + Kxzδz

)
+ A = 0

∂
∂δy
〈V −V0〉 = ∑r

(
Kyxδx + Kyyδy + Kyzδz

)
= 0

∂
∂δz
〈V −V0〉 = ∑r

(
Kzxδx + Kzyδy + Kzzδz

)
= 0

(38)

If we visualize Kµν as elements of a matrix K with µ and ν representing indices,
we can rewrite this as

(39)N

(
∑
r0

K(r0)

)
δ(r0) = −

A
0
0


Determining δ now reduces to solving a linear system of equations. We know

that δµ(r0) changes sign whenever r0µ changes sign, which is analogous to fixing
cµ as positive and using absolute values of elements of K and G. Since δ has
the form δµ(r0) = cµr0µ, positive values of δ-components represent expansion and
negative values represent contraction.
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3.3 Three dimensions and a unit cell

We are now ready to construct the framework for the full problem.

R’0

r0

R’

δ(r0)

D0

D’0
s0

r

R0

R

S0

S’0

S

S’

D’

D

s
Q’(R’)

Q(R) s’

Figure 7: Vector diagram for two ions in an expanded lattice.

Consider an ion in an undistorted lattice which is located in the unit cell with
absolute coordinate R0 (Fig. 7). The absolute coordinate of the ion’s equilibtrium
position is thus S0 = R0 + D0 where D0 is the displacement vector of the ion
within the unit cell. The displacement between two ions is then

(40)s0 = S′0 − S0 = (R′0 + D′0)− (R0 + D0) = (R′0 − R0) + (D′0 −D0) = r0 + d0

When the lattice expands, the displacement between the equilibrium sites be-
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comes

(41)s = S′ − S =
(
R′ + D′

)
− (R + D) = (R′ − R) + (D′ −D) = r + d

where S and S′ are absolute coordinates of ions’ equilibrium sites, and R and R′

are absolute coordinates of ions’ unit cells. We will have the same uniformity
constraints as before, δµ(r0) = cµr0µ. In particular, ions within the cell will move
proportionally to the expansion, δµ(D0) = cµD0µ. Therefore,

(42)
d = D′ −D

= D′0 + δ(D′0)− (D0 + δ(D0))
= (D′0 −D0) + (δ(D′0)− δ(D0))
= d0 + δ(d0)

Equation 41 becomes

(43)s = S′ − S = r + d = r0 + δ(r0) + d0 + δ(d0) = s0 + δ

where we set δ = δ(r0) + δ(d0) for brevity.
Allow now ions to deviate from equilibrium by Q = Q(R) and Q′ = Q′(R′)

respectively. The distance between them is expressed in the first approximation
as

(44)
|s′| = |S′ − S + Q′ −Q|

= |s0 − (Q−Q′ − δ)|
= s0 −

s0

|s0|
· (Q−Q′ − δ)

The potential spans over all interacting ions with assigned coordinates S and S′

and has the form

(45)

V = ∑
S,S′

(
k(s0)

2
(
|s′| − |s0|

)2 +
g(s0)

6
(|s′| − |s0|)3

)

= ∑
S,S′

(
k(s0)

2

(
s0

|s0|
·
(
Q−Q′ − δ

))2

− g(s0)
6

(
s0

|s0|
·
(
Q−Q′ − δ

))3
)

= ∑
S,S′

(k(s0)s0µs0ν

2|s0|2
(
Q−Q′ − δ

)
µ

(
Q−Q′ − δ

)
ν

−
g(s0)s0µs0νs0σ

6|s0|3
(
Q−Q′ − δ

)
µ

(
Q−Q′ − δ

)
ν

(
Q−Q′ − δ

)
σ

)
25



Keep in mind that s0 = r0 + d0 depends on the choice of S and S′. Similar to

before, we set Kµν(s0) =
k(s0)s0µs0ν

|s0|2
and Gµνσ(s0) =

g(s0)s0µs0νs0σ

|s0|3
and compare V to

(46)V0 = ∑
S,S′

Kµν(s0)
2

(
Q−Q′

)
µ

(
Q−Q′

)
ν

Notice that equations 45 and 46 have the same form as equations 29 and 30.
We can therefore immediately write out 〈V −V0〉:

(47)
〈V − V0〉 = ∑

S,S′

(
Kµν(s0)

2
δµδν +

Gµνσ(s0)
6

(
δµ

〈(
Q−Q′

)
ν

(
Q−Q′

)
σ

〉
+ δν

〈(
Q−Q′

)
µ

(
Q−Q′

)
σ

〉
+ δσ

〈(
Q−Q′

)
µ

(
Q−Q′

)
ν

〉))
As before, we omitted here odd multiples of Q−Q′ and the cubic δ term.

Next we use variable transformationsQ(R) = 1√
N ∑k eik·RQk

Qk = ∑λ

√
h̄

2mωkλ
εkλ

(
a†
−kλ + akλ

) (48)

where m and ε depend on a particular ion, to obtain

Q(R)−Q′(R′) =
1√
N

∑
k,λ

eik·R
(√

h̄
2mωkλ

εkλ − eik·r

√
h̄

2m′ωkλ
ε′kλ

)(
a†
−kλ + akλ

)
(49)
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Consider now

∑
S,S′

〈(
Q−Q′

)
µ

(
Q−Q′

)
ν

〉
=

1
N ∑

R,D,R′ ,D′
∑

k,k′ ,λ,λ′
ei(k+k′)·R

(√
h̄

2mωkλ
εk,λµ

− eik·r

√
h̄

2m′ωkλ
ε′k,λµ

)(√
h̄

2mωk′λ′
εk′ ,λ′ν

− eik′·r

√
h̄

2m′ωk′λ′
ε′k′ ,λ′ν

)〈(
a†
−kλ + akλ

) (
a†
−k′λ′ + ak′λ′

)〉
= ∑

D,R′ ,D′
∑
k,λ

(√
h̄

2mωkλ
εk,λµ

− eik·r

√
h̄

2m′ωkλ
ε′k,λµ

)(√
h̄

2mωkλ
ε∗k,λν

− e−ik·r

√
h̄

2m′ωkλ
ε′
∗
k,λν

)
coth

1
2

βh̄ωkλ

= ∑
D,R′ ,D′

ασ
µν

(50)

D and D′ represent specific ions in the unit cells and define values for m and ε,
and m′ and ε′. Here ασ

µν = ασ
µν(s) is a term, which is acquired by summation over k

and λ using the harmonic results from the first part of the thesis. Superscript σ is
there to remind us that the Einstein summation goes over three indices, although
the constant only depends on two.

Equation 47 therefore becomes

(51)〈V − V0〉 = ∑
D,R′ ,D′

(
N

Kµν(s0)
2

δµδν +
Gµνσ(s0)

6

(
δµα

µ
νσ + δναν

µσ + δσασ
µν

))
Before we proceed, we would like to separate all units into a separate constant

to see the length scale of this problem. We begin by changing the form of Kµν. We
know that s0µ = |s0|Ωµ where

(52)


Ωx = cos θ cos φ

Ωy = cos θ sin φ

Ωz = sin θ
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Here θ is the elevation angle that s0 makes with the horizontal xy-plane and φ is
the azimuth angle. Therefore,

(53)
Kµν(s0) = k(s0)ΩµΩν

= k0k(s0)ΩµΩν

= k0Kµν(s0)

where k(s0) is the force constant in units of k0. Kµν is the dimensionless counter-
part of Kµν.

Similarly, we obtain

(54)Gµνσ(s0) = gΩµΩνΩσ

= gGµνσ(s0)

assuming there is only one value for anharmonic interactions. We have thus suc-
cessfully replaced lengths of bonds’ projections s0µ with bonds’ angles θ and φ,
keeping geometry intact.

The next step is to redefine the expansion terms. Recall that

(55)δµ = δµ(r0) + δµ(d0) = cµr0µ + cµd0µ = cµ(r0µ + d0µ) = cµs0µ

We can rewrite this as
(56)δµ = cµs0µ = cµ fµlµ = fµ∆µ

Here lµ is the lattice constant of the conventional unit cell, lx = ly = a, lz = c, and fµ

is the length of s0µ in units of lµ. ∆µ is therefore the expansion of the conventional
unit cell, and is the value we’re looking for.

The last step is to extract dimensional constants from the α terms:
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ασ
µν = ∑

k,λ

(√
h̄

2mωkλ
εk,λµ − eik·r

√
h̄

2m′ωkλ
ε′k,λµ

)(√
h̄

2mωkλ
ε∗k,λν

− e−ik·r

√
h̄

2m′ωkλ
ε′
∗
k,λν

)
coth

1
2

β h̄ωkλ

=
h̄

2
√

k0m0
∑
k,λ

1
ωkλ

(
εk,λµ√

m
− eik·r

ε′k,λµ√
m′

)(
ε∗k,λν√

m
− e−ik·r ε′∗k,λν√

m′

)
coth

ωkλ

T

=
h̄

2
√

k0m0
ασ

µν

(57)

where ω is in units of
√

k0
m0

(which is acquired when solving the harmonic prob-
lem with force constants in units of k0 and masses in units of m0), m and m′ are in

units of m0 and T is in units of
h̄
√

k0
m0

2kB
.

The problem is thus reduced to

(58)
〈V − V0〉 = ∑

D,R′ ,D′

(
Nk0

2
Kµν(s0) fµ fν∆µ∆ν

+
g h̄

12
√

k0m0
Gµνσ(s0)( fµα

µ
νσ∆µ + fναν

µσ∆ν + fσασ
µν∆σ)

)
We now look for values ∆x, ∆y, ∆z for which this average is minimal. Setting

the derivatives in each dimension to zero, we obtain2:

(59a)J〈V−V0〉(∆x, ∆y, ∆z) = J f1(∆x, ∆y, ∆z) + J f2(∆x, ∆y, ∆z) = 0

(59b)J f1(∆x, ∆y, ∆z) = −J f2(∆x, ∆y, ∆z)

where3

2 J is the Jacobian matrix, JF(x1, . . . , xn) =


∂y1

∂x1
· · · ∂y1

∂xn
...

. . .
...

∂ym

∂x1
· · · ∂ym

∂xn

.

3Since 〈V −V0〉 is a scalar function, it’s easier to work with the transpose of the Jacobian.
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(60a)f1 =
Nk0

2 ∑
D,R′ ,D′

Kµν(s0) fµ fν∆µ∆ν

(60b)J f1(∆x, ∆y, ∆z) = Nk0 ∑
D,R′ ,D′

Kxx f 2
x ∆x + Kxy fx fy∆y + Kxz fx fz∆z

Kxy fx fy∆x + Kxy f 2
y ∆y + Kxz fy fz∆z

Kxy fx fz∆x + Kxy fy fz∆y + Kxz f 2
z ∆z



(60c)
f2 =

g h̄
12
√

k0m0
∑

D,R′ ,D′
Gµνσ(s0)( fµα

µ
νσ∆µ + fναν

µσ∆ν + fσασ
µν∆σ)

=
g h̄

12
√

k0m0
∑

D,R′ ,D′
Ax(s0)∆x + Ay(s0)∆y + Az(s0)∆z

(60d)J f2(∆x, ∆y, ∆z) =
g h̄

12
√

k0m0
∑

D,R′ ,D′

Ax(s0)
Ay(s0)
Az(s0)

 =
g h̄

12
√

k0m0
∑

D,R′ ,D′
A(s0)

Ax, Ay and Az are terms, calculated from the Einstein summation. Putting equa-
tions 59b and 60 together gives

(61)∑
D,R′ ,D′

 Kxx f 2
x Kxy fx fy Kxz fx fz

Kxy fx fy Kxy f 2
y Kxz fy fz

Kxy fx fz Kxy fy fz Kxz f 2
z

∆x
∆y
∆z

 = −L
1

12N ∑
D,R′ ,D′

A(s0)

Here we see that everything, except L = g h̄√
k3

0m0
, is dimensionless. Constant L is

the length parameter and determines the scale of the problem.
The system of linear equations (61) can be solved for values of ∆x, ∆y, ∆z. As

mentioned before, these are the expansions of the conventional unit cell, i.e. each
dimension µ of the unit cell is increased by ∆µ.

3.4 Results

Table 1 indicates some common values that were used for numerical calculations
in the one- and three-dimensional cases with identical particles. T and g were
also used in the full BaFe2As2 case.

4We took the temperature at which used lattice constants were measured [10].
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Anharmonic interaction strength G or g −103 eV/Å3

Number of unit cells in each dimension N 10
Temperature4 T 175 K
Lattice constant a 3.96 Å

Table 1: Numerical values for constants in the one- and three-dimensional cases with
identical particles

In the one-dimensional case numerical calculations with K = 1.39 · 102 N/m
produce

δ = 1.20 · 10−2Å (62)

In the three-dimensional case, with k = 1.39 · 102 N/m for the nearest neigh-
bor interaction and k = 4.18 · 10 N/m for the next-nearest neighbor interaction,
we calculate

(63)δ =

 6.28
−0.99
−0.99

 · 10−3Å

For calculations on the BaFe2As2 crystal we used Fe-As interaction and mass
of Fe ion as the reference constants: k0 = kFe-As, m0 = mFe. Magnitudes of the force
constants were the same as in the harmonic problem with an additional anhar-
monic constant g for the Fe-As interaction. The length parameter was calculated
to be L = −9.67 · 10−2 Å. We found that the lattice expansion depends strongly on
the Fe-Fe-As angle, i.e. the angle that the Fe-As bond makes with the horizontal
and which controls how far the As ions are from the Fe plane. For a variable an-
gle and the rest of the crystallographic data unchanged, Fig. 8 shows how much
the lattice constants change. At a 0◦ angle we have a positive expansion in the
xy-plane, which is expected since the FeAs plane is then purely horizontal. At a
58◦ angle, when As ions are in the same plane as Ba ions, we have no expansion
in the xy-plane.

For the 35◦ angle we have

(64a)δa = −5.65 · 10−3Å

(64b)δc = 8.63 · 10−1Å

which is near a zero expansion in the xy-plane and a maximal expansion in the
z-direction. These points are shown on Fig. 8 as black squares.
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Figure 8: Left: Expansion of the lattice constant a. Right: Expansion of the lattice
constant c. Black squares show the expansions for a 35◦ angle.

3.5 Isotope effect

One of the ways to compare our results with the experimental data is through
the isotope effect. We know that the isotope substitution results in the change of
lattice parameters [1], so we change the mass of Fe ions in our calculations and see
how much the lattice expansions change. As expected, the change is proportional
to the expansion itself. Fig. 9 shows the change of lattice expansions when we
switch from 57Fe to 54Fe.

For the 35◦ angle, the mass change leads to δa changing by−1.13 · 10−5 Å and
δc changing by 1.73 · 10−3 Å. For comparison, it was experimentally measured [1]
that there was no change in a and a (3± 1) · 10−3 Å change in c when going from
57Fe to 54Fe.

4 Conclusions

The overall result of the work has been very satisfactory. Harmonic phonon dis-
persions are in excellent agreement with published data; almost reproducing the
energy spectrum from [6]. While it is hard to check the validity of calculations for
identical anharmonic particles (since the anharmonic effect is intrinsic to the ma-
terial — there is no method to measure lattice constants in a real crystal without
the anharmonic expansion), the anharmonic expansions obtained were of the an-
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Figure 9: Change of the lattice expansions (red for a and green for c) due to 57Fe to
54Fe substitution for different angles.

ticipated order of magnitude. The isotope expansion of the BaFe2As2 crystal also
agrees with the experimental data very well. In this work we found that Fe-Fe-
As angle, i.e. the As height, greatly affects both direction and magnitude of the
expansion. It has been argued that Tc is very sensitive to this height [15, 16]. As
the calculated isotope expansion can be both positive and negative, depending
on the Fe-Fe-As angle, it could possibly be related to the experimental observa-
tion of both positive and negative isotope effects in different materials [1, 17].
This, however, is an extensive topic and deserves a separate study as a natural
continuation of this thesis.
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A Published data on BaFe2As2
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Kihou, K. Horigane, S. Tsutsui, T. Fukuda, H. Eisaki, A. Iyo, H. Yamaguchi, A. Baron, M. Braden and K. Yamada.

Copyright (2010) by the Physical Society of Japan.

 0

 2

 4

 6

 8

 10

Z Γ X P Γ N

P
ho

no
n 

Fr
eq

ue
nc

y 
[T

H
z]

 0  0.1 0.2 0.3 0.4 0.5
Phonon DOS [1/THz]

Figure 11: Phonon dispersions and density of states calculated from the first principles.
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B Quantum-mechanical treatment of a harmonic prob-
lem

Consider the Hamiltonian for a one-dimensional harmonic chain of N identical
particles:

(65)H =
N

∑
j=1

p2
j

2m
+

mω2

2 ∑
j

(xj+1 − xj)2

We introduce discrete Fourier transforms of x and p, assuming periodic bound-
ary conditions:

(66a)xj =
1√
N

∑
k

Qkeikja

(66b)pj =
1√
N

∑
k

Pke−ikja.

The Hamiltonian can thus be written in wave vector space as

(67)H = ∑
k

PkP−k
2m

+
mω2

k
2

QkQ−k

where

(68)ωk =
√

2ω2(1− cos ka).

To see that ωk really are the phonon frequencies, we introduce ladder opera-
tors that would diagonalize the Hamiltonian:

(69a)ak =
√

mωk
2h̄

(Qk +
i

mωk
P−k)

(69b)a†
k =

√
mωk

2h̄
(Q−k −

i
mωk

Pk)

They obey commutation relations
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(70a)[ak, a†
k′] = δkk′

(70b)[ak, ak′] = [a†
k , a†

k′] = 0

The Hamiltonian then reduces to

(71)H = ∑
k

h̄ωk

(
a†

k ak +
1
2

)

where a†
k ak behaves as the number operator, similar to the case of the simple har-

monic oscillator. Here we see that the energy spectrum is characterized by quanta
h̄ωk. Essentially, frequencies ωk are the same as the ones acquired by the Classical
Theory.

For a more detailed discussion, see [18].

C Pseudocode

C.1 Harmonic calculations

• Set all numerical constants

• Generate k-vectors (excluding the k-vector at the primitive cell boundary)

for n1 from 1 to N1-1

for n2 from 1 to N2-1

for n3 from 1 to N3-1

add to k-array

(n1/N1)*b1 + (n2/N2)*b2 + (n3/N3)*b3

• Generate displacement matrices

for each ion in the unit cell

for each neighbor

set

r = vector from ion to neighbor

R = transpose(r/norm(r))*(r/norm(r))
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• Create matrix M

assign an <id> to each ion in the unit cell

for each ion <id>

for each neighbor

write the motion equation

add the motion equations

sort coefficients by <id>

insert into row of M that corresponds to the <id>

• Solve the matrix for different k-vectors

for each k in the k-array

solve for eigenvalues and eigenvectors of M

assign <lambda> to each set of eigenvalue-eigenvector

take square root of eigenvalues (omega)

add the solutions to the spectrum-array

• Calculate density of states

round off spectrum-array to 1 micro-eV

count how many times each distinct omega occurs

C.2 Anharmonic calculations

• Calculate constants Ax, Ay, Az

for each ion <id>

for each neighbor

for mu from x to z

for nu from x to z

for sigma from x to z

for each k in the k

for each <lambda>

set

s = vector from ion to neighbor

calculate A_x, A_y, A_z
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using values from spectrum-array

set

A = A + (A_x, A_y, A_z)

• Calculate the LHS sum of matrices

for each ion <id>

for each neighbor

calculate the LHS matrix <Kff>

set

Kff_sum = sum of all matrices <Kff>

• Obtain final values of ∆µ

Kff_sum \ (-L*(1/12N)*A)
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