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Abstract. In this project, Bak’s agent based model (BPS model) is reproduced and
implemented in an artificial stock market to investigate whether price variation in
simulation result of this Agent Based Model may have similar scaling phenomena as
those in a real stock index.

The probability distribution of price variations in HuShen 300 index in 2012 is analyzed,
it is found that it follows the Levy stable distribution and the return probability has
power law dependence on time interval with -0.75. Using scaling variable in probability
distribution, those distribution curves collapse on the same one.

Different kinds of updating rules are defined in the agent based model, we discover
that the agent based model with agents having imitation and positive feedback has the
similar scaling behavior as real stock index.

1. Introduction

The recent financial crises raise doubts about standard economic models which tend to

use Gaussian distribution to represent the price variation in financial markets [1, 2].

Those theories work, but only in long time intervals. High frequency operation in the

stock market is becoming more and more popular among traders, which means that the

distribution in short time intervals is important. Actually the price variations in the

real financial markets are similar to Levy stable distribution not Gaussian distribution,

a conclusion is brought up by Mandelbrot when he studied cotton market [3].

Agent based model is a powerful mathematical tool for stochastic process analysis in

complex system, being able to show dynamic properties with interacting particles. For
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social systems, agent based model may take into account many details in the simulation

process to find social actions emerging by defining the interacting or updating rules

for individual agents. Researchers use agent based model to approach non-equilibrium

systems and to explain the non-Gaussian distribution and scaling behavior in stock

market [4, 5, 6, 7, 8, 9].

In this paper, we will analyze the probability distribution of price variations in the

HuShen 300 Index in 2012 over different time scales, then build agent-based models

with agents defined by different interacting and updating rules. Scaling in simulation

results of the interacting agents in an artificial stock market will be compared to it in

real stock markets. Then it will explain somehow what kinds of behaviors will lead to

non-Guassian distribution of the price variation in stock market.

2. Analysis of real stock index

The analysis of stock markets by physical methods has been practiced for a long time

[3, 10, 11, 13]. In this study, we take HuShen 300 index in 2012 as analysis objects. We

will study the probability distribution of price variations in different time intervals.

2.1. Price variation of stock index

For a time series S(t) of stock index prices, the variation V∆t(t) over a time scale ∆t is

defined as the forward change in the natural logarithm of S(t) [11, 12].

V∆t(t) = ln
(

S(t+∆t)
S(t)

)
= ln

(
1 + S(t+∆t)−S(t)

S(t)

)
(1)

From (1), if the time interval is small, the variation will be quite small, then

V∆t(t) = ln
(

S(t+∆t)
S(t)

)
= ln

(
1 + S(t+∆t)−S(t)

S(t)

)
≈ S(t+∆t)−S(t)

S(t) (2)

where (2) is the return function for economic theory.

In Figure 1, 1 minute data of the HuShen 300 index in 2012 is illustrated, and we use

the return of stock price as variation. The price variation of index is shown in Fig.2.

Some economic theories try to claim that price variations of stock market should

follow the process of random walk, which is correct only in long time intervals. Many

stock crises are happening these days, which gives doubt about those theories, since

in Gaussian distribution extreme conditions (large variation) should not happen so

frequently. As shown in Figure 3, this Gaussian noise plot which has same mean and

variation with 1 minute data does not have that many extreme events as they are in

historical 1 minute data.

2.2. Scaling in probability distribution of price variation

In 1966, Mandelbrot used Levy stable distribution to represent the price variation of

the cotton market [3], and also Mantegna and Stanley tell us that stable non-Gaussian
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Figure 1. 1 minute data of HuShen 300 index 2012(Data is from BiaoPuYongHua
Data Center)
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Figure 2. Price variation of 1 minute data of HuShen 300 index 2012
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distributions are suitable for financial analysis because they still obey limit theorems

[12]. Also Levy stable distribution can better explain that fat-tail and leptokurtic

phenomena in stock market. Figure 4 shows the probability distribution curves of price

variation in different time intervals (∆t varies from 1 minute to 10 minute).
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Figure 4. Probability distribution of price variation in different time intervals

Here we use the approach as Mantegna and Stanley did in [10], the return probability,

which is P∆t(0) as a function of ∆t, is studied. This is because P∆t(0) is the data least

affected by noise. Plot of P∆t(0) versus ∆t in log-log figure is in Figure 5. We observe

that slope of the data in a large interval fits -0.75, which is not a Gaussian distribution

since the slope is not 1/2 [13]. This conclusion also quite well agrees with the Levy

stable distribution [14].
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Figure 5. Return probability P∆t(0) versus ∆t in log-log plot and fit slope.

In figure 5, some points do not quite fit the line. This is because our data is limited,

noise can not be avoided. A Levy stable symmetrical distribution [10] is described as

Lα (V,∆t) = 1
π

∫∞
0 exp (−γ∆tqα) cos(qV )dq (3)

this probability of return P∆t(0) is given by
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P∆t(0) = Lα (0,∆t) = 1
π

∫∞
0 exp (−γ∆tqα)dq = Γ(1/α)

πα(γ∆t)1/α
(4)

As shown in Figure 5, slope is -0.75, the parameter α is as follows

− 1
α = −0.75,α ≈ 1.33 (5)

Also Levy stable symmetrical distribution rescales under transformation as following

Vs =
V

(∆t)1/α
(6)

Lα (Vs, 1) = Lα (V,∆t) (∆t)1/α (7)

So we know that scaling in the entire interval have the similar behavior as return

probability P∆t(0). As in Figure 6, with index α = 1.33 in (5), we may get that the

probability distribution of price variation in different time intervals collapse on same

curve by using the transformation equation (6,7).
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Figure 6. Probability distribution of price variation in different time intervals collapse
on same curve by using scaling transformation equation.

In this section, by analyzing the real index HuShen 300 index 2012, it can be concluded

that the price variation in short time intervals does not behave like random walk, it

quite fits into Levy stable symmetrical distribution with scaling parameter α = 1.33.

Next I will discuss that whether agent based models with agents who have different

kinds of behaviors may have the similar probability distribution as the real market.

3. Agent-Based Model in Artificial Stock Market

In 1997, an agent based model(BPS models) was introduced to simulate price variation

in stock market by P. Bak, M. Paczuski, M. Shubik [4]. In the following parts, several

simplified BPS models will be set up to discuss what kinds of trading behaviors give

probability distributions of price variation in real stock market that are non-Gaussian

distribution.
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3.1. BPS model in an Artificial Stock Market

Here definitions, simplifications and restrictions of the BPS model in an artificial stock

market are introduced.

(i) There are N agents and N/2 shares in our artificial stock market, each agent can

only own one share at most. It means that in every time step, there are N/2 agents

who own shares and are potential sellers, while the N/2 agents who do not own

shares are potential buyers. If the agent i is a potential sellers, he will have a sell

price Ps(i), also if the he is a potential buyers, he will have a bid price Pb(i)

(ii) Initially we randomly set the buyers bid price Pb and sellers sell price Ps in a

symmetric range of prices distributed uniformly. Also stock price limitation is set

as: maximum price is maxP , and minimum price is 1.

(iii) In each step one agent is randomly chosen, it may be a potential buyer or seller.

Price updating rules are as follows.

(a) His price Ps(i) or Pb(i) is updated according to rules: approaching ∆P to

instant stock price, which is also the price in last step P (t−1), with probability

(1 + D)/2, stepping away ∆P from instant stock price with probability

(1 − D)/2. ∆P differs in different models. Here the drift parameter D is

used to give agents a direction to update their price.

(b) After updating his price, this agent will look into the entire market. If this

agent owns a share, and observes that the price that one or more buyers who

are willing to give is more than his sell price Pb(i), he will sell his share to the

buyer who offers the highest price Ps(j). While if he wants to buy a share, and

one or more buyers are willing to sell shares at less than his bid price Ps(i),

he buys from the seller offering the lowest price Pb(j). If there is no price

for which this agent wants to sell or buy, the procedure will go to the next

step, and the stock price P (t) stays the same as P (t− 1). When a transaction

happens, that price is the new stock P (t), which is bid or sell price of agent j.

(c) After the transaction, seller in this transaction becomes a potential buyer, he

will have a bid price Pb. And buyer becomes a potential seller, he will have a

sell price Ps. New Pb and Ps are defined differently in different models.

3.2. Market only with zero-intelligence agents

In this model, at each update step the chosen agent updates his price by one unit

randomly, which means ∆P = 1. Once there is a transaction, new buyer and seller will

randomly choose their new prices in the range as 0 < P < P (t) or P (t) < P < maxP .

These ranges are defined like this because agents should not lose money at the first step

after transaction.

This process is according to Bak [4] similar with reaction-diffusion process in [15], in

which there are two kinds of particles in a one dimensional tube. Each kind of particles

will be jetted into the tube from the each end. Particles will update their position
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randomly. When two kinds of particle meet with each other, they will react, and then

they will be replaced by new particles. Authors in [15] show that the position variation

P∆t in time interval ∆t will follow:

V∆t ∼ ∆t1/4(ln∆t)1/2 (8)

Since this reaction-diffusion process has similar interacting rules as our Agent Based

Model, so we expect that there is some similarity between its ”position” and our ”price”.

So the price variation in our model is represent as R(∆t), which is maximum variation

in non-overlapping time intervals ∆t over its time intervals ∆t, averaged by the entire

simulation time. And also R(∆t) can be represented as a Hurst plot [16], whose slope

of its local derivatives of its logarithmic function gives exponent H. Based on the

theoretical result in (8) from similar process in [15], we expect that our price variation

R(∆t) will follow the similar equation as

ln (R (∆t)) ∼ 1
4 ln(∆t) + 1

2 ln (ln(∆t)) (9)

Simulation parameters are set as agent number N = 500, maximum price maxP = 2000

and drift parameterD = 0.3. Buyers’ bid price Pb and sellers’ sell price Ps are assigned in

the distributed uniformly intervals 1
3maxP < Pb <

1
2maxP and 1

2maxP < Ps <
2
3maxP

initially. Also in our simulation results, we use one step to represent N times agents’

updating times. The reason we integrate this is because there is barely transactions

happening during the whole stochastic process, so we take the average time that all

agents can update once as one step of simulation results.
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Figure 7. Simulation of zero-intelligence agents with drift parameter

As it is shown in Figure 7, in long time interval H exponent goes to 1
4 , which quite

agrees quite well with previous analytic work.

3.3. Simulation impact of drift parameter D

We should discuss that whether drift parameterD has influence on our simulation result,

so we keep the same parameter as the model in 3.2 except we set drift parameter to

D = 0.
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Based on the comparison of simulation results between models with and without drift

parameter D, we can tell that in 7(a) transactions happen more frequently than in 8(a),

also in 7(c) agents price are closer to each side than in 8(c). But in 8(b) and 7(b),

both local derivative curves converge to 1
4 in long time interval, but obviously in 7(b),

it converges faster. Then we may conclude that the drift parameter D can accelerate

the trading process without changing the scaling behavior. So drift parameter D will

be kept in the following models.
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(b) Hurst plot of R(∆t) and its
local derivatives
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Figure 8. Simulation of zero-intelligence agents without drift parameter

As it is shown above, we show that price variations in agent based model may not

necessarily follow Gaussian distribution. In the following sections, we will give the

agents some behaviors according to real trading behaviors in real markets to discuss

whether agent based model will reproduce similar scaling results as the analysis of real

markets.

3.4. Market with imitating agents

It has been argued that in real stock market imitation trading universally exists [17],

which also causes ’crowd effect’. Bak discussed whether this imitating behavior is a

reason that leads to non-Gaussian phenomenon. In that model, imitating behavior is

defined as: after a transaction new potential buyer will randomly copy some potential

buyer’s price Pb(m) as his new bid price Pb(i) = Pb(m). Similarly when he is a

new potential seller, his new sell price is randomly copied from other seller agent n,

Ps(i) = Ps(n). Obviously, after a long time, agents will emerge to choose the market

prices are offered by more agents. In our simulation, parameters of the model are the

same with the ”zero-intelligence agent with drift” model, the only difference is this

model has imitating behavior.

The simulation result, shown in Figure 9, is quite interesting because exponent H will

converge to 0.5 in long time interval, which means that it has random walk behavior.

This fits quite well to the financial theories, that in long time interval price variation

distribution is Gaussian distribution while in short time it is not.
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Figure 9. Simulation of market with imitating agents

3.5. Price updating by positive feedback volatility

Time series in real stock markets has similar behavior to earthquakes and floods which

has long-term positive autocorrelation, meaning that after a big variation will likely

follow another big change [18]. Here positive feedback is introduced to modify the

update value ∆P . In this model ∆P is equal to largest price variation in last T time

steps.

Also In this part parameter T equals to 5, and other parameters of this simulation are

the same as the ”zero-intelligence agent with drift” model. Differences between that

and the present simulation are imitating behavior and positive feedback volatility.
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Figure 10. Simulation of market with imitating agents updating price by volatility
positive feedback, T = 5

Comparison between Figure 9 and Figure 10 shows that volatility positive feedback

behavior can enlarge the price variation in short time intervals. This conclusion agrees

with the observation of big variation in short time intervals and long-term positive

autocorrelation in real stock market.
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3.6. Scaling in Agent Based Model

We will study scaling behavior in the model which has imitating agents updating price

with volatility positive feedback. As shown in Figure 10, the simulation result shows

us that the exponent H may be represented as a constant H = 0.6. Since H = 0.6 is

constant, it means that

ln (R (∆t)) ∼ H ln(∆t) + C (10)

Then we set the scaling variable as

z = V
∆tH (11)

which has the similar transformation equation as (6).

We have

R(t) =
∫
V P (V,∆t)dV = C∆tH (12)

If we follow (11), distribution curves can collapse, then we have

R(t) =
∫
|V |P (V,∆t)dV

/∫
P (V,∆t)dV

=
∫
|z|∆tHP

(
z∆tH ,∆t

)
dz∆tH

/∫
P
(
z∆tH ,∆t

)
dz∆tH

= ∆tH
(∫

|z|F (z)dz
/∫

F (z)dz
) (13)

So we use similar methods to analyze the simulation results as we use in HuShen

300 index, in section 2.
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Figure 11. Probability distribution of price variation in different time intervals in
agent based model with imitation behavior and positive feedback

In Figure 11, probability distribution curves of price variation in different time intervals

are plotted. Since the number of times that zero occurs is quite related to the parameters

in this model and also zero variation happens much more frequently than the other

values, during this analyzing process, we only use the data for non-zero variation. The

time intervals we choose are from 30 to 3000.
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Figure 12. Probability distribution of price variation in different time intervals
collapse on same curve by using scaling transformation equation in Agent Based Model

In Figure 12, we can see that after the transformation by scaling variable and

normalization, distribution of price variation in different time intervals collapse on the

same curve, shows that it has scaling behavior. So we can get

P (V,∆t) ∼ F
(
V
/
∆tH

)
(14)

It has the similar scaling as (7). This kind of behavior was observed by Mandelbrot,

who suggested that the scaling function F is a Levy stable distribution [4]. Our results

quite agree with his analytical work.

4. Conclusion

It has been argued that Levy stable distribution universally exits in financial market.

By analyzing HuShen 300 index, we find that the scaling behavior in this index fits the

theoretical analysis of Levy stable symmetrical distribution. Implanting two kinds of

behavior imitation and positive feedback to an agent based model, we also find such

scaling in this model. The results may imply that imitation which causes ”crowd effect”

in financial market and positive feedback which gives long-term positive autocorrelation

may be related to the dramatic evolution of financial markets.
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