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Abstract

A Quantum Monte Carlo method of calculating operator expectation values
for the ground state of the nearest-neighbor Heisenberg model on large square
lattices is presented, along with some comparisons of the results obtained from
this method and alternative methods for 2D lattices. In the simulations the
ground state is projected out from an arbitrary state and sampled in a valence
bond basis spanning the spin singlet subspace. The projection method is then
extended to be used on a simplified Hubbard model at half-filling, which is
aptly called the T0-less Hubbard model, for arbitrary relative strengths of the
electron hopping and electron-electron repulsion energy parameters. Results
for calculated ground state energies in 1D are presented. These calculations
are performed using a spin-charge separated basis, in which the valence bonds
are generalized to also carry charge.
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Chapter 1

Introduction

In this Master thesis, a method of calculating ground state expectation values
in two models related to the half-filled Hubbard model is studied.

A projector quantum Monte Carlo method as devised by Sandvik [7, 8] will be
presented in the first part of the thesis, and then applied to the Heisenberg
model on a 2D bipartite lattice. This method offers efficient ground state
simulations for this model and is found to be easily implementable.

In the latter part, this projection method is extended to accommodate simu-
lations of a related variant of the Hubbard model, the T0-less Hubbard model,
sharing some particular characteristics with the Heisenberg model which allow
the construction of a similar projection method. As in the method developed
by Sandvik, the operator of interest is evaluated by importance sampling by
considering a Maarkov chain of projection strings. The main focus is defining
a suitable basis for simulations of this model and generalize the approach of
the projection method in Heisenberg model. Also, the algorithm for generating
Metropolis steps in the sampling is given much attention, as the introduction
of fermionic operators cause the projection to easily break, giving zero contri-
bution to the evaluation of the sought expectation value.

The reader is expected to have basic understanding and experience with the no-
tion of second quantization, which is commonly used in the context of quantum-
many body theories. However, even skipping the technical parts where the
operator manipulations leading to the central rules of evaluation used in the
simulations are performed, the rather accessible graphical representation of the
projection in the valence bond basis may help to give a basic idea of the physics
and the results obtained.

The implementation is only described in abstract terms, and no knowledge of
programming is required. Though, the material is probably more accessible
for readers with some experience in computational physics and concepts such
importance sampling.
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Chapter 2

The Hubbard model

The Hubbard model is a lattice fermion model introduced to describe the in-
teraction and correlation of electrons in crystalline solids. Using this model
the metal-insulator transition of some materials, which are expected to be-
have as metals using the standard independent-electron band theory rather
are insulators, and related magnetic phenomena can be described. It is also
used to model basic aspects of the (not yet fully understood) physics in high-
temperature cuprate superconductors [1, 2].

The picture to have in mind is a square lattice of ions, where the lower bands
are filled and only one conducting band is available for the valence electrons to
occupy. The Hubbard model is then based on two principal mechanisms in the
interaction of these electrons; the tight-binding hopping of electrons between
the lattice sites and the on-site Coulomb interaction of electrons positioned on
the same site.

In a basis of localized Wannier states1 the Hamiltonian of the Hubbard model
can be written

H = −t
∑
〈i,j〉

∑
σ=↑,↓

(
c†i,σcj,σ + c†j,σci,σ

)
+ U

∑
i

ni,↑ni,↓ , (2.1)

where the operators satisfy:

{ci,σ, c
†
j,σ′} = δi,jδσ,σ′ , {ci,σ, cj,σ′} = 0

ni,σ = c†i,σci,σ .
(2.2)

The first part of the Hamiltonian is the same as in the tight-binding model,
where the operator c†i,σ creates an electron with spin-orientation σ in the Wan-
nier state of the band localized about lattice site i, and ci,σ is the corresponding

1See Appendix A for a formal definition of Wannier states in the context of the tight-
binding model.
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CHAPTER 2. THE HUBBARD MODEL

destruction operator. This part is called the band term or kinetic term, as it
involves the motion (hopping) of the electrons in the crystal.

The second term in the Hubbard Hamiltonian is the on-site interaction. Two
(opposite-spin) electrons occupying the same Wannier state will feel a strong
Coulomb-repulsion, adding to the energy of such configuration.

In this version of the Hubbard model, one considers a crystal electron structure
formed by only one Wannier state (atomic orbital) for each site, giving only
one band in the kinetic term, i.e. the single-band Hubbard model. However,
this band splits up into what is called two Hubbard subbands, separated by the
energy on-site interaction U , as the energy spectrum of a single site becomes
occupation number dependent by the on-site interaction term [1, pp 178-180].
The doubly-occupied states then make up the upper, high-energy subband,
and the states not doubly occupied are included in the lower subband. Here,
it is assumed that the energetic cost of introducing a doubly occupied state is
large compared to the kinetic energy associated with the hopping processes,
t� U . Low-energy states are then constructed by letting electrons occupy the
lower subband before, after half-filling, starting to occupy the higher energy
states in the upper subband. In this way the motion of the electrons in the
low-energy sector is constrained, tending to avoid double occupation of a site,
thus inducing correlation into the system.

Mott insulators and ceramic superconductors

With the surprising breakthrough of high-Tc cuprate superconductors in the
second half of the 1980s, the interest of the Hubbard model was revived [2].
Unexplainable by conventional phonon-based Cooper pairing, it was found
that the ceramic compound La2CuO4 becomes superconducting when doped
by replacing a fraction of the lanthanum with barium.

In the resonating-valence-bond theory developed by Anderson, the interest-
ing physics is essentially confined in layers of CuO2 sandwiched between two
layers of [La,Ba]O, in the characteristic layered quasi-2D structure of these
cuprate superconductors. Pure La2CuO4 is in fact a Mott insulator, where
the charge fluctuations associated with metallic conduction is suppressed by
a strong on-site electron repulsion (giving a large-U Hubbard model, which is
further discussed below), and in the context of the Hubbard model the relevant
Wannier state on the lattice is a d-orbital of the ionized Cu2+. The interaction
between these Cu-ions then involves the intersite O2− in a process called super-
exchange. By this, the structure of the CuO2 layer effectively becomes a square
lattice for this electron correlation interaction (figure 2.1). When doped, each
Ba introduced in the lattice removes one electron from the system, making
the oxygen absorb one more electron from a Cu-ion to maintain the preferable
O2− configuration. The electron-holes associated with the created in this way
become the metallic carriers [2], [3, p 38], [1, pp 217-220].
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CHAPTER 2. THE HUBBARD MODEL

Figure 2.1: The valence interaction in the CuO2 layer is effectively between elec-
trons in a d-orbital of the ionized Cu (filled circles), reducing the topol-
ogy of the system to a square lattice.

From this point of view, the studing the physics of (undoped) Mott insulating
systems though the Hubbard model can be considered a testing ground for
understanding high-Tc superconductivity.

2.1 The Heisenberg model

By applying a specific canonical transformation, one obtains an effective spin
Hamiltonian valid in the limit t/U � 1. This is done by treating the kinetic
term like a perturbation of the on-site interaction, mixing the approximate
eigenstates corresponding to a fixed electron occupation number of each site.
The kinetic term is split into a sum of three operators; T+, T0 and T−, which
includes the electron jumping processes resulting in an increase, conservation
and decrease of the number of doubly occupied sites, respectively:

H = t (T− + T0 + T+) + UhU , (2.3)

with

T− = −
∑
〈i,j〉

∑
σ

(
(1− ni,−σ)c†i,σcj,σnj,−σ + (1− nj,−σ)c†j,σci,σni,−σ

)
T0 = −

∑
〈i,j〉

∑
σ

(
(1− ni,−σ)c†i,σcj,σ(1− nj,−σ) + ni,−σc

†
i,σcj,σnj,−σ + H.C.

)
T+ = −

∑
〈i,j〉

∑
σ

(
ni,−σc

†
i,σcj,σ(1− nj,−σ) + nj,−σc

†
j,σci,σ(1− ni,−σ)

)
,

and

hU =
∑
i

ni,↑ni,↓ .

Now, one wants to find a basis where the Hamiltonian is block diagonalized
so that states of different number of doubly occupied sites are not mixed,
making this a good quantum number. For large U , the ground state in this
basis should be found in the low-energy subspace, consisting of states with no
doubly occupied sites.

5



CHAPTER 2. THE HUBBARD MODEL

Applying the transformation

It is the terms T− and T+ that connect states in the two subbands, so the trans-
formation is constructed to remove these. Writing the effective Hamiltionian
from this transformation, denoting the generator S, as:

Heff. = exp(iS)H exp(−iS) = H +
i[S,H ]

1!
+
i2[S, [S,H ]]

2!
+ ... , (2.4)

it turns out that to prevent mixing to order t2/U , a suitable choice of generator
is [1, 4]:

S[2] = − it
U

(T+ − T−) +
it2

U2
[T0, (T+ + T−)] .

Evaluating the commutators in the Campbell-Baker-Hausdorff expansion to
second order with this generator, on finds:

i
[
S[2],H

]
= −t(T+ + T−) +

2t2

U
[T+, T−] +O(t3/U2) ,

and

i2
[
S[2], [S[2],H ]

]
2!

= − t
2

U
[T+, T−] +O(t3/U2) ,

so that the transformed second order Hamiltonian can be written:

H
[2]
eff. = tT0 + UhU +

t2

U
[T+, T−] .

Although H
[2]
eff. does not mix states of the two subbands, the commutator

gives the terms T+T− and T−T+, thus virtually changing the number of doubly
occupied sites before restoring it again.

Considering the low-energy states at half-filling and with the on-site interaction
energy U large enough so that each site is occupied by a single electron, as the
cost of introducing doubly occupied site is comparably high. Then the terms
tT0 and UhU in the transformed Hamiltonian drops out as these are only non-
zero for states with a non-zero number of holes and doubly occupied sites. Also,
T+T− gives no contribution, as there are no doubly occupied states to remove,
so the only interesting part is the term −T−T+. In the single-occupation
subspace, this remaining term can be identified as [1, pp 207-208]

−T−T+=̇
∑
〈i,j〉

(4Si · Sj − 1) .

This expression describes the process of virtual hopping of opposite-spins
neighbors as an effective spin-interaction, and from this the anti-ferromagnetic
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CHAPTER 2. THE HUBBARD MODEL

Heisenberg model2 is obtained:

HHB = J
∑
〈i,j〉

(
Si · Sj −

1

4

)
, J =

4t2

U
> 0 . (2.5)

Note that although the ground state of this effective Hamiltonian, |Ψ0〉HB,
has no doubly occupied sites (to second order, by construction), these are
mixed back in when transforming back to the original basis of the Hubbard
Hamiltonian:

|Ψ0〉 = exp(−iS) |Ψ0〉HB = (1− t

U
(T+ − T−) + . . .) |Ψ0〉HB

= |Ψ0〉HB −
t

U
T+ |Ψ0〉HB + . . . ,

(2.6)

where the states from T+ |Ψ0〉HB all contain a pair of double-occupied and
non-occupied lattice sites.

2.2 The search for the ground state

Finding and characterizing the ground state is often taken as a starting point
in the exploration of a model in physics. In quantum many-body systems
like the Hubbard model and related models considered here, even this basic
task can be anything but trivial as the dimensionality of the Hilbert space
dH , typically grows exponentially with the number of interacting particles.
Adding to the burden, numerical routines for diagonalizing the Hamiltonian
scale like (dh)3 [5, pp 594-596]. For the spin-half Heisenberg model of N spins,
one finds dh = 2N in a basis of Sz-eigenstates, and thus the scaling of the
computational load is ∼ 23N , which quickly becomes overwhelming as N is
increased, regardless of the computational resources available.

Although exact numerical methods can be made much more efficient than
suggested by this simplistic example3, they are still often too slow for reliable
extrapolation of physical quantities to the thermodynamical limit (N → ∞).
This leads to approximate methods such as Monte Carlo simulations, where
accuracy of the result is traded for reduced running times and thus making
larger systems accessible.

2Generally, the constant term is left out, but here it is included for convenience.
3The exact Heisenberg ground state energy has been computed for up to N = 36 (6× 6

lattice), using the Lanczos diagonalization algorithm [6].
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Chapter 3

Simulations of the Heisenberg
Model

In this chapter, a computational technique for projecting out the ground state
of the Heisenberg model and then calculating the corresponding energy, will
be presented. The technique is based on the rather basic algorithm power
iteration for obtaining an eigenvector for an operator, and the ground state
is sampled by a Metropolis Monte Carlo scheme. A basis suitable for this
projection-sampling called the valence bond basis, is also presented.

3.1 Power iteration

A simplistic approach for finding the eigenvector to a dominant eigenvalue for
a matrix is through power iteration.

Consider a a diagonalizable L× L-matrix M , with normalized eigenvectors ei
and the corresponding real positive eigenvalues λi, where λ1 is the dominant
eigenvalue. A random vector v0 can be expanded in this basis consisting of
the eigenvectors1:

v0 =
∑
i

ciei .

By operating on v0 by a large power of M , one obtains

Mkv0 = Mk
∑
i

ciei =
∑
i

ciλ
k
i ei ,

1This approach obviously breaks down if v0 ⊥ e1. However, when considering a random
vector in Rd this occurs with probability 0.
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CHAPTER 3. SIMULATIONS OF THE HEISENBERG MODEL

which is approximately parallel to the eigenvector e1, as:

∣∣∣∣Mkv0

c1λk1
− e1

∣∣∣∣ =

∣∣∣∣∣∑
i

ciλ
k
i

c1λk1
ei − e1

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i≥2

ciλ
k
i

c1λk1
ei

∣∣∣∣∣∣ ≤
∑
i≥2

∣∣∣∣ cic1

∣∣∣∣ (λiλ1

)k
,

and (λi≥2/λ1)k → 0 , when k →∞ . From this one can conclude that

vk ≡
Mkv0

|Mkv0|
→ e1 , k →∞ .

This approach is now carried over to the problem of finding, or projecting out,
the ground state of a Hamiltonian where exact diagonalization is not practically
feasible. First one needs to make sure that the lowest energy state correspond
to the dominant eigenvalue. For systems with a finite upper bound of the
energy this is easily done by shifting the spectrum with a constant C, so that
the highest energy correspond to zero. The ground state energy must then be
negative, so one may also reverse the spectrum to retain a positive sign in the
power iteration. Now the operator that projects out the ground state can be
written:

π ≡ 1

Ωk
(−(H − C))k , k →∞ , (3.1)

where a normalization factor Ω = −(E0 − C) (containing the actual value of
ground state energy E0), has been added.

Starting with some random initial state expanded in a basis of energy eigen-
states

|φ〉 =
∑
n

cn |En〉 ,

the ground state is projected out by the operator defined in (3.1):

π |φ〉 =
1

Ωk
(C −H )k

∑
n

cn |En〉 → c0 |E0〉 , k →∞ .

3.2 Projector quantum Monte Carlo

As the ground state of the spin-half Heisenberg model for on a bipartite lattice
of an even number of sites N , is a singlet (Stot = 0) [9], it can be can be
expanded in a valence bond basis [10]:

|GS〉 =
∑
V

fV |V 〉 , fV ≥ 0 ,

10



CHAPTER 3. SIMULATIONS OF THE HEISENBERG MODEL

Figure 3.1: The sites of the square lattice is divided into two sublattices with the
sites A and B (filled). Here, periodic lattices are considered, giving the
topology of a torus.

where the basis states correspond to a specific pairing of the N spins (for lattice
size N) into N/2 singlets:

|V 〉 =
∣∣(a1, b1), (a2, b2) . . . (aN/2, bN/2)

〉
, (a, b) ≡ 1√

2

(
|↑a↓b〉 − |↓a↑b〉

)
.

Further, the basis can be restricted to only include valence bond state consist-
ing of singlets with the sites labeled a and b belonging to the two sublattices
A and B, respectively (figure 3.1).

3.2.1 The projection operator

The Heisenberg Hamiltonian (2.5) is now written in terms of singlet projection
operators,Qij :

HHB = −J
∑
〈i,j〉

Qij , Qij ≡
1

4
− Si · Sj ,

where the action of these operators on a valence bond state are2:

Qij |. . . (i, j) . . .〉 = |. . . (i, j) . . .〉

Qij |. . . (i, l) . . . (k, j) . . .〉 =
1

2
|. . . (i, j) . . . (k, l) . . .〉 .

(3.2)

So the singlet projection operator Qij forms a singlet of the spins at site i ∈ A
and j ∈ B, and any spins that previously formed singlets with these, now form
another singlet, as in shown in figure 3.2.

From the form of the Hamiltonian (2.5) it is clear that the highest eigenvalue
is 0, corresponding to completely aligned spins. The energy spectrum is then
already negative semi-definite, and one may omit the shifting constant C i the
ground state projection operator (3.1), so it is written:

π =
1

Ωk

(
J
∑
〈i,j〉

Qij

)k
, k →∞ ,Ω = −E0 .

2See Appendix C for a formal treatment of the valence bond basis and the evaluation
rules for the singlet projection operator.
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CHAPTER 3. SIMULATIONS OF THE HEISENBERG MODEL

kji l kji l

Qij

kji l kji l

Qkj

Figure 3.2: The action of the singlet projection operator onto valence bond states
with i, k ∈ A and j, l ∈ B. The valence bonds are represented by lines
connecting the sites of which the spins form singlets. In the second
example the state is modified by rewiring the bonds, and also a factor
1/2 is introduced.

For finite k, one may expand the k-factor product of sums of projection oper-
ators to a sum of products3:

π(k) =

(
J

Ω

)k∑
r

(∐
p

Q
(r)
ipjp

)
=

(
J

Ω

)k∑
r

P (k)
r , (3.3)

where P (k)
r is a product, or an operator string, of k singlet projection opera-

tors:

P (k)
r ≡

k∐
p=1

Q
(r)
ipjp

= Qikjk . . . Qi2j2Qi1j1 ,

and the sum
∑

r P
(k)
r contains all (zN/2)k possible k-length strings of singlet

projection operators, where z is the coordination number, i.e. the number of
nearest-neighbors for each site in the lattice.

Applying a projection string P
(k)
r , onto an initial valence bond state |V0〉,

yields a modified valence bond state as in figure 3.3. The propagated state
has amplitude wr depending on m; the number of times the operators in the
string causes a reconfiguration of the singlets in the propagating valence bond
state:

P (k)
r |V0〉 = wr |Vr〉 , wr = 1/2m . (3.4)

As the ground state and its properties are not know before actually performing
the calculation, the value of Ω in (3.3) and the expansion coefficient for the
initial state in the eigenstate basis are unknown, but an expression for the
ground state of the Heisenberg model expanded in the valence bond basis

3The silly notation used here regarding the product sequence symbol suggests that the
order of the factors in the sequence is reversed. This is so as one would like to call the
rightmost operator the first etc. as it is in this order they will be evaluated when acting
upon a ket-state.
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CHAPTER 3. SIMULATIONS OF THE HEISENBERG MODEL

Figure 3.3: The initial state |V0〉 is projected by the string Pr of length k = 5,
giving the projected state |Vr〉. The singlet projection operators Qij , in
the projection string are represented by bold lines indicating onto which
lattice site pair they are operating. Here, the amplitude is not shown,
but in this example wr = (1/2)3 = 1/8, as three operators reconfigure
the singlet pairings during the propagation.

is obtained, up to a normalization factor by use of the truncated projection
operator and any initial valence bond state:

|GS〉 ∼
∑
r

P (k)
r |V0〉 =

∑
r

wr |Vr〉 , k →∞ . (3.5)

3.2.2 Calculating the GSE by importance sampling

As the Hamiltonian can be written as a sum of singlet projection operators,
the action of it on a valence bond state gives a linear combination of modified
valence bond states:

H |Vr〉 = J
∑
〈i,j〉

−Qij |Vr〉 = J
∑
b

h
(r)
b |V

(b)
r 〉 , hb = −1 or − 1/2 , (3.6)

where the values of h(r)
b are given by the expression (3.2) for the corresponding

singlet projector −Qij .

Now one can write an expression for the ground state energy by using the
expression (3.5) for the projected ground state, in which the unknown normal-
ization factor cancels:

E0 = E0
〈ψ|GS〉
〈ψ|GS〉

=
〈ψ|H |GS〉
〈ψ|GS〉

=
〈ψ|H

(∑
r P

(k)
r |V0〉

)
〈ψ|
(∑

r P
(k)
r |V0〉

) , k →∞

and letting the projection strings act on the initial state, one finds:

E0 =

∑
r wr 〈ψ|H |Vr〉∑
r wr 〈ψ|Vr〉

=

∑
r wr

(
J
∑

b h
(r)
b 〈ψ|V

(b)
r 〉

)
∑

r wr 〈ψ|Vr〉
.

13



CHAPTER 3. SIMULATIONS OF THE HEISENBERG MODEL

The state |ψ〉 used here is arbitrary as long as it has a non-zero overlap with
the ground state, but it is convenient to use the classical anti-ferromagnetic
(staggered) Néel state:

|ΨN 〉 = |σ1, σ2, . . . , σN 〉 , σi =

{
↑ , i ∈ A
↓ , i ∈ B

for which every valence bond state has an equal overlap: 〈ΨN |V 〉 =
(
1/
√

2
)N/2.

The expression for the ground state energy then simplifies to:

E0 =

∑
r wr

(
J
∑

b h
(r)
b

)
∑

r wr
. (3.7)

This expression is not variational in the sense that for finite k the physical
interpretation is not well defined. Nevertheless, in the limit of large k corre-
sponding to infinitely long projector strings, it becomes an exact expression
for the ground state energy.

Noting that the form of the expression (3.7) resembles an expectation value
of some stochastic variable er =

∑
b h

(r)
b using a probability distribution, or

weight, wr, one can evaluate the expression by employing a Monte Carlo algo-
rithm to sample over the possible projector strings, giving the name projector
Monte Carlo (PMC). This stochastic interpretation is valid since all weights
are positive definite from (3.4), so the ground state energy (in units of J) is
obtained by evaluating:

E0/J =
∑
r

wr
Z
er , Z =

∑
r

wr .

Sampling of the operator strings is then done by utilizing the Metropolis algo-
rithm4 to generate a random walk through the possible configurations of the
singlet operators in a operator string of length k, with distribution according
to the weight wr/Z.

Outline of sampling process

Following the standard Metropolis algorithm, each step in the importance sam-
pling is divided into two parts. Starting in some configuration, a trial configu-
ration is generated which is then accepted with some probability or else rejected.
After this, the estimator corresponding to the last accepted configuration is
evaluated and sampled. The mean value of these samples then constitute the
approximate value of the quantity in question.

After constructing some suitable initial valence bond state |V0〉, an initial (finite
length) string of singlet operators P , is created. The weight w of this string is

4See Appendix D for a basic introduction to Monte Carlo simulations and the concepts
used in the following.
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CHAPTER 3. SIMULATIONS OF THE HEISENBERG MODEL

obtained by propagating the initial state, evaluating the action of each operator
in order according to rules in (3.2). Now a trial string, P ′ is constructed by
translating5 a number of singlet projection operators in P :

P = Qikjk . . . Qirjr . . . Qi1j1
update−−−−→ P ′ = Qikjk . . . Qi′rj′r . . . Qi1j1 .

Then |V0〉 is propagated with this modified string, and the corresponding
weight w′ is obtained. This reconfiguration of the operators is accepted, let-
ting P → P ′ with probability pacc. = min(w′/w, 1) , else the trial string is
discarded. For each step the energy estimator is evaluated for the propagated
state |VP 〉 = P |V0〉 by (3.6) and sampled.

In this updating scheme the average acceptance rate can easily be adjusted
by changing the number of operators translated in generating the trial strings.
Note that the initial valence bond state |V0〉, which the generated strings op-
erate upon, is kept fixed during the sampling, and only the projection strings
themselves are modified.

Detailed balance and ergodicity

With this construction, the composite transition probability in a specific up-
date is given by

p(P → P ′) = psugg.(P → P ′)pacc.(P → P ′) ,

with psugg.(P → P ′) being the probability of obtaining the string P ′ from P
when randomly translating the specified number of operators. If the singlet
operators chosen to be translated in the construction of the trial string are
chosen uniformly, and also the pair of lattice sites which the operator is trans-
lated to operate onto, then this suggestion or candidate-generating function is
clearly symmetric, meaning:

psugg.(P → P ′) = psugg.(P
′ → P ) .

Using the acceptance probability as above the transition probability in this up-
dating scheme satisfies the condition of detailed balance [11, pp 196-199]:

p(P → P ′)

p(P ′ → P )
=
pacc.(P → P ′)

pacc.(P ′ → P )
=

min(w′/w, 1)

min(w/w′, 1)
=
w′

w
.

Also, the random walk generated by this updating scheme is clearly non-cyclic
and irreducible, as the probability of trivial updates (operators are translated
to their original position) is non-zero for any projection string and for ob-
taining any given string there exists an updating sequence corresponding to
simply transversing any other string, updating the operators to the specified
configuration. From this one concludes that the generated Markov chain is
ergodic, and the sampling scheme will sample operator strings with probability
proportional to their weights, as intended.

5Translate here means change onto which lattice sites the operator is acting.
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Details of the implementation

For all systems, first a set of convergence runs are setup where the projector
string length, k, used is increased for each run until the value for the computed
quantity converges within the statistical error of the importance sampling.
Then it can be argued that k is large enough for the sampled quantity to be a
good approximation of the ground state expectation value.

To increase the efficiency of the importance sampling by reducing the projec-
tion length used, a pre-projection is carried out for each run. This is done
similarly to the standard relaxation, where the samples from the initial period
in the run are discarded, removing any dependence of the specific choice of ini-
tial configuration for the simulation. When performing the pre-projection, the
projected state |Vr〉 = Pr |V0〉 found after the initial relaxation period replaces
the original initial state in the subsequent projections: |V ′0〉 = |Vr〉. After the
projection string is then re-relaxed, sampling may begin.

3.3 Variational expression for arbitrary operators

The form of the expression for the ground state energy (3.7) was based on
the defining property of the Hamiltonian being diagonal in a basis of energy
eigenstates, and in a similar form any operator diagonal in this basis can be
expressed. An expression for the expectance value of an arbitrary operator,
not necessarily simultaneously diagonalizable with the Hamiltonian, can be
obtained in a two-sided projection:

〈A 〉GS =

∑
l,r 〈V ′0 |P

†
l A Pr |V0〉∑

l,r 〈V ′0 |P
†
l Pr |V0〉

=

∑
l,r wlwr 〈Vl|A |Vr〉∑
l,r wlwr 〈Vl|Vr〉

. (3.8)

The overlap of the valence bond states can be evaluated by finding the bond
loops formed by superimposing the singlet pairing of the two states onto the
lattice [10]. The overlap is then found to be

〈Vl|Vr〉 = 2Nl−Nb ,

where Nl is the number of closed loops formed by the overlapping valance bond
states and Nb = N/2 is the number of bonds in the state. See figure 3.4 for an
illustrated example.

Then one may useWl,r = wlwr 〈Vl|Vr〉 as a weight in the sampling as all factors
are positive-definite, and one obtains the expression:

〈A 〉GS =

∑
l,rWl,r al,r∑
l,rWl,r

, al,r =
〈Vl|A |Vr〉
〈Vl|Vr〉

.
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:

:

:

Figure 3.4: The overlap of two valence bond states is computed by counting
the bond-loops formed when overlaying the states. In this example
〈Vl|Vr〉 = 22−3 = 1/2.

Table 3.1: Calculated E0 by PMC compared to [6].

L N = L× L EPMC
0 /JN Eref

0 /JN k nMCS

4 16 −1.201(41) -1.20178 64 4.8 · 105

6 36 −1.178(22) -1.17887 144 1.9 · 106

8 64 −1.173(17) -1.17349 256 4.3 · 106

12 144 −1.1707(6) -1.17069 576 7.7 · 106

16 256 −1.1699(6) -1.16998 1024 3.1 · 107

Spin correlation function

A particularly interesting operator that can easily be evaluated in the VB basis
is the spin correlation function, Si · Sj . The estimator for this operator can
also be evaluated by using bond loops, and it is found to be [10]:

〈Vl|Si · Sj |Vr〉
〈Vl|Vr〉

=


+3/4 , i, j in same loop and on same sublattice
−3/4 , i, j in same loop but on opposing sublattices
0 , i, j in different loops.

3.4 Results for the Heisenberg model

Simulations where performed on square lattices, with sizes ranging from 4× 4
(N = 16) to 16 × 16 (N = 256), calculating the Heisenberg ground state
energies of these systems. In table 3.1 and figure 3.5 values of per-site E0

obtained by the PMC method is presented, expressed in units of the interaction
strength parameter J . The calculated energies are compared to accurate values
obtained by the stochastic series expansion Monte Carlo method [6], where the
values are shifted by −JN/2 to account for the slightly different form of the
Heisenberg Hamiltonian used.

The statistical error is estimated by performing a number of independent runs
(independent walkers) for each set of parameters. In these simulations ten
walkers are used, and the accuracy is given as the standard deviation of the
results from the walkers. This method of error estimation can be considered

17
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(a) Ground state energy, E0(N).
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(b) Convergence of E0(N) in k.

Figure 3.5: Per-site ground state energies of 2D Heisenberg model by PMQ. To the
left results from simulations are shown with a fitted power function and
the large-N limit. In these simulations projection string length k = 4N
is used and 3 · 104 k samples divided over 10 walkers. Data from two
convergence runs are also shown, where k is varied (right).

wasteful and inaccurate, as each walker must perform the costly relaxing pro-
cedure independently and when a only small number of walkers is used, the
error estimation itself may exhibit significant statistical fluctuations [12]. Nev-
ertheless, this method is found to be easily implemented and fairly robust for
automated error estimations, as when performing the large number of runs
necessary for the k-convergence test.

Scaling of simulation time

If a suitable length of the projection string follows k ∼ Nγk , and the number
of samples generated in each run is set to nMCS ∼ kγn to obtain some given
statistical accuracy, then the simulation time scales like k ·nMCS ∼ Nγk(1+γn).
Here, projector string length k = 4N is chosen and the number of samples
generated in each run is nMCS = 3 · 104 k with m = 4 operators updated in
each trial string, thus γk, γn = 1 is set and simulation time scales ∼ N2.

As seen, the sampling accuracy is increasing with system size with this scaling
of parameters, suggesting γn < 1 could be used, reducing the scaling of simu-
lation time. The running time for the largest lattice considered here (16× 16)
is roughly half an hour on a standard (by 2010) single-CPU personal com-
puter.
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Extrapolation of E0

Given the high accuracy of the calculated ground state energies it is tempting
to try fitting the obtained values to some analytical expression for the ground
state energy for arbitrary lattice sizes, E∗0(N) , to make a rudimentary approx-
imation of E0 in the thermodynamical limit. To this end a fit of the calculated
energies is made for a power function:

E∗0(N)/JN = aN b + c ,

and from the simulation data in table 3.1, the parameters are obtained:

a∗ = −2.1674 , b∗ = −1.5179 , c∗ = −1.1695 .

From this one has an approximation of E0(N →∞) readily available:

lim
N→∞

E∗0(N)/JN = −1.1695 .

This is a over-estimation of the ground state magnitude, as E0/JN = −1.16945
for a 64× 64-system as computed in [7].
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Chapter 4

Simulations of the T0-less
Hubbard model

In the previous chapter the Heisenberg model was obtained from the half-filled
Hubbard model in a special treatment for t/U → 0, and using a Projector
Monte Carlo technique the ground state was sampled in the valence bond basis.
Here, a different transformation will be applied to a slightly modified Hubbard
model, lacking the T0 term in the Hamiltonian, and adapt the sampling scheme
to run simulations of this electronic system for finite values of t/U .

4.1 Spin-charge separation

The quasiparticle operators c̃r and qir are defined using the ordinary electron
(Wannier state) creation operators c†r [13]:

c̃r = c†↑,r(1− n↓,r) + (−1)rc↑,rn↓,r ,

q+
r = (c†↑,r − (−1)rc↑,r)c↓,r ,

q−r = (q+
r )† ,

qzr =
1

2
− n↓,r ,

It can be verified that the operators defined by this satisfies:

{c̃r, c̃†r′} = δrr′ , {c̃†r, c̃
†
r′} = 0 ,

[c̃†r, qr′ ] = 0 , [qir, q
j
r′ ] = iδ

∑
k

εijkq
k
r ,

with

qxr =
1

2
(q+
r + q−r ) , qyr =

1

2i
(q+
r − q−r ) .
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Thus, c̃†r is a fermionic charge-like quasiparticle, and qir obey the SU(2) alge-
bra associated with spin-half bosons, and by this transformation the spin and
charge in the electron system is separated.

Using these quasi-particle operators, the half-filled Hubbard Hamiltonian

H = t(T− + T0 + T+) + UhU ,

is rewritten in the spin-charge separated form, where the electron jumping part
becomes:

T− = 2
∑
〈r,r′〉

(−1)r
(

1

4
− qr · qr′

)
c̃r′ c̃r ,

T0 = 2
∑
〈r,r′〉

(
1

4
+ qr · qr′

)
(c̃†r c̃r′ + c̃†r′ c̃r) ,

T+ = 2
∑
〈r,r′〉

(−1)r
(

1

4
− qr · qr′

)
c̃†r c̃
†
r′ ,

and the on-site interaction term:

hU =
1

2

∑
r

c̃†r c̃r .

Here (−1)r = −1 for r ∈ A and (−1)r
′

= 1 for r′ ∈ B is defined, and in the
following it is assumed that the indices of the operators refer to A and B sites
as written above.

One can now observe that the transformed T− and T+ operators are singlet
projection operators in quasi-spin space, with quasi-charge operators attached.
As presented earlier, it is the T− and T+ operators that introduces fluctuations
of the number of doubly occupied sites (and holes) in the lattice, and it can
be seen from the definition of the quasi operators that the creation of a pair of
quasi charges in the transformed system correspond to the creation of a doubly
occupied site and hole pair in the (original) Hubbard model.

4.1.1 A T0-less Hubbard model

To retain the significative mechanism of charge density fluctuation of the Hub-
bard model, but still allow for the quasi-spin part to be handled in terms of
singlet projection in the valence bond basis as in PMC for the Heisenberg
model, the incompatible T0 term is valorously left out and one obtains the
T0-less Hubbard model, which will be the subject of the following work:

H̃ = t(T− + T+) + UhU .

As with the complete Hubbard model, the Heisenberg model is obtained in the
limit t/U → 0 by letting T0 → 0 when performing the large-U transformation
(2.4), and so the models can be considered to be equivalent in this limit.
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4.2 PMC for the T0-less Hubbard model

The aim now is to construct a projector Monte Carlo method of computing
ground state properties of the model.

4.2.1 The charge decorated valence bond basis

For finite t/U the simulation must also allow for quasi charge fluctuations,
corresponding to states with a non-zero number of double occupied sites and
holes, so the basis used has to be adapted for this. To this end, one may
consider a quasi charge-decorated quasi spin valence bond basis, where the quasi
charges are added to quasi spin-singlet states.

The basis used is restricted to AB-singlet pairs, as for the Heisenberg model,
and the restriction that the charge configurations of the basis states are such
that both sites in each singlet carries equal quasi charge is also imposed. In
this sense one can talk of charged and uncharged singlets, referring to sites
paired in a valence bond and their (equal) quasi charge state. As before, the
singlet states are expressed in terms of valence bond operators, but now these
are extended to also form charged states. The operator creating uncharged
singlets is defined analogously to the ordinary singlet creation operator:

χ̃0†
ij |vac〉 =

1√
2

(
|↑i↓j〉 − |↓i↑j〉

)
⊗ |◦i◦j〉 ,

and the charged singlets are created by the charge decorated operator:

c̃†i c̃
†
jχ̃

0†
ij |vac〉 =

1√
2

(
|↑i↓j〉 − |↓i↑j〉

)
⊗ |•i•j〉 ,

where the arrows denote quasi spin states, and • (or ◦) denote sites carrying
quasi charges (or no charges) respectively, with i ∈ A and j ∈ B.

As quasi and ordinary spin coincide in the quasi charge or double occupancy
free sector, one can conclude that the ground state of the corresponding quasi
spin Heisenberg model is found in the quasi spin singlet sector, spanned by
a (quasi charge-less) quasi spin valence bond basis, analogous to the similar
treatment in the original Hubbard model [13]. From this it is clear that the
ground state for the T0-less model in the limit t/U → 0 can be expanded
in this charge decorated valence bond basis. The restriction to only consider
equal charged sites in the singlets can be argued to be valid, since T+ and
T− preserve sub-lattice charge balance1, and the basis states in the subspace
considered can be formed by repeated application of these operators onto the
uncharged singlet ground state.

1What is called the sub-lattice charge balance is given by
∑

i∈A ñi −
∑

j∈B ñj .
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T± acting on charge decorated valence bond states

Including the quasi charges, the rules for evaluating the action of the terms
in the T0-less Hamiltonian onto the charge decorated valence bond states be-
come slightly more complicated than the corresponding rules for the ordinary
spin projection operators found in the Heisenberg Hamiltonian2. Writing some
charge decorated valence bond state |Ṽ 〉 of N -sites, where M of the N/2 sin-
glets are charged, and the other M ′ singlets are uncharged:

|Ṽ 〉 =

M∏
s=1

(
c̃†as c̃

†
bs
χ̃0†
asbs

) M ′∏
s=1

(
χ̃0†
a′sb
′
s

)
|vac〉 , (4.1)

withM+M ′ = N/2 and {as}∩{a′s} = {bs}∩{b′s} = ∅, so that each site of the
lattice is included in exactly one singlet-pair factor. Note that the ordering of
the charge decorated valence bond operators in the first product is arbitrary,
as the charge operators always are written in the AB pairs corresponding to
the singlet operator, and

[
c̃†i c̃
†
j , c̃
†
k c̃
†
l

]
= 0, when the indices are unique.

Obviously, all states formed in this way have a well defined charge state, and
are eigenstates of the on-site interaction term:

h(U)
r |Ṽ 〉 =

1

2
ñr |Ṽ 〉 .

The kinetic terms are expressed by writing the singlet projection using the
charge decorated valence bond operators3:(

1

4
− qr · qr′

)
= Q̃rr′ = χ̃0†

rr′χ̃
0
rr′ ,

and so:

T
(+)
rr′ = 2 c̃†r c̃

†
r′χ̃

0†
rr′χ̃

0
rr′ , T

(−)
rr′ = 2 c̃r′ c̃rχ̃

0†
rr′χ̃

0
rr′ .

One may observe that these charge decorated singlet projection operators an-
nihilate any state where the sites onto which it operates, (here labeled r and
r′) are not equally charged, as the quasi charge operators are fermionic.

In the case of matching charge states, first consider the operation onto two
uncharged neighboring sites when only the T (+)

rr′ terms are active. Dropping
the 2 in T

(+)
rr′ , consider the operator c̃†i c̃

†
jχ̃

0†
ij χ̃

0
ij , where i and j matches two

indices in {a′s} and {b′s} in the product of uncharged valence bond operators
as written in (4.1). The result is a modified charge decorated valence bond
state, where the quasi particles on sites i and j form a charged singlet:

c̃†i c̃
†
jχ̃

0†
ij χ̃

0
ij |Ṽ 〉 = c̃†i c̃

†
jχ̃

0†
ij

M∏
s=1

(
c̃†as c̃

†
bs
χ̃0†
asbs

)[
χ̃0
ij ;

M ′∏
s=1

χ̃0†
a′sb
′
s

]
|vac〉 .

2The impatient reader may refer to figure 4.1 where the results from these calculations
are encapsulated in a graphical representation.

3The valence bond operators are defined in Appendix C.
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The spin part of the operation follow the same rules as in the treatment of the
ordinary singlet projection operators. For (i, j) ∈ {(a′s, b′s)}, one evaluate the
commutator as4:[

χ̃0
ij ;

M ′∏
s=1

χ̃0†
a′sb
′
s

]
|vac〉 =

[
χ̃0
ij , χ̃

0†
ij

]M ′−1∏
s=1

χ̃0†
a′sb
′
s
|vac〉 =

M ′−1∏
s=1

χ̃0†
a′sb
′
s
|vac〉 ,

and for (i, l), (k, j) ∈ {(a′s, b′s)}:[
χ̃0
ij ;

M ′∏
s=1

χ̃0†
a′sb
′
s

]
|vac〉 =

[
χ̃0
ij , χ̃

0†
il χ̃

0†
kj

]M ′−2∏
s=1

χ̃0†
a′sb
′
s
|vac〉

=
1

2
χ̃0†
kl

M ′−2∏
s=1

χ̃0†
a′sb
′
s
|vac〉 .

So, if the spins on sites i and j are paired in a singlet prior to the operation
there is no change in in the singlet configuration, and the uncharged singlet
is simply changed into a charged one. Else, the (uncharged) sites, k ∈ A and
l ∈ B paired with i and j, respectively, forms a new uncharged singlet and a
factor 1/2 is also introduced.

In the case of operating onto two neighboring sites each carrying a charge so
the T (−)

rr′ terms are active, the treatment is slightly more complicated, and in
the following the valence bond operators are not written out to clarify the
action of the charge operators:

|Ṽ 〉 =̇
M∏
s=1

c̃†as c̃
†
bs
|vac〉 .

Again, the quasi singlets are affected analogous to ordinary spin. Consider c̃j c̃i
where where i and j matches two indices in {as} and {bs}. If these sites are
found in the same charge decorated valence bond operator, (i, j) ∈ {(as, bs)},
the result is found in a straight forward way:

c̃j c̃i |Ṽ 〉 =̇ c̃j c̃i

(
c̃†i c̃
†
j

M−1∏
s=1

c̃†as c̃
†
bs

)
|vac〉

=
[
c̃j c̃i , c̃

†
i c̃
†
j

]M−1∏
s=1

c̃†as c̃
†
bs
|vac〉 =

M−1∏
s=1

c̃†as c̃
†
bs
|vac〉 ,

as c̃j c̃i commutates with the other charge operator pairs when no indices are
matching i or j. Here, this operator acts like the identity operator in singlet
space, and the result is that the specified singlet becomes charge-less.

c̃j c̃iχ̃
0†
ij χ̃

0
ij |Ṽ 〉 =

M−1∏
s=1

(
c̃†as c̃

†
bs
χ̃0†
asbs

)
χ̃0†
ij

M ′∏
s=1

χ̃0†
a′sb
′
s
|vac〉 ,

4It should be understood that the factors removed from the product sequence correspond
to the charge and valence bond operators containing the specified indices.
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Now, consider the situation when the sites i and j are not in the same charged
singlet, but paired with two other sites, k and l, i.e. (i, l), (k, j) ∈ {(as, bs)}:

c̃j c̃i |Ṽ 〉 =̇ c̃j c̃i

(
c̃†i c̃
†
l c̃
†
k c̃
†
j

M−2∏
s=1

c̃†as c̃
†
bs

)
|vac〉 .

The factor c̃ic̃
†
i gives one, and commutating c̃j past c̃

†
l c̃
†
k gives a factor (−1)2 =

1. However, the convention is to write the charge operators in AB pairs with
the A and B site to the left and right, respectively, and a sign flip is introduced
by commutating the charge operators c̃†l c̃

†
k into the right order. So the full

expression is:

c̃j c̃iχ̃
0†
ij χ̃

0
ij |Ṽ 〉 = −1

2
c̃†k c̃
†
l χ̃

0†
kl

M−2∏
s=1

(
c̃†as c̃

†
bs
χ̃0†
asbs

)
χ̃0†
ij

M ′∏
s=1

χ̃0†
a′sb
′
s
|vac〉 .

Again, the singlet part behaves as previously, pairing the i and j sites into
one singlet and k and l into another, giving a factor 1/2 and the combined
amplitude is then −1/2.

4.2.2 Construction of the GS projection operator

Following the procedure from constructing the projector operator for the Heisen-
berg model, one first need a supremum estimation of the highest energy level
in the charge decorated singlet sector, EHES , to shift the spectrum appropri-
ately. Such an estimation can be obtained by considering the largest possible
individual contribution from each term in the Hamiltonian as operating on a
corresponding two- or one-site eigenstate.

For the kinetic terms only one of T (−)
ij and T (+)

ij can be simultaniously active
when acting on a state of some specific charge configuration, and an eigenstate
must be written as an linear combination of two states, for which the T (+)

ij and

T
(−)
ij operates in a mirrored fashion. If the singlet projection gives a maximum

factor of magnitude one, and neglecting any phase factors from the fermionic
operators, one finds:

t
(
T

(+)
ij + T

(−)
ij

)
|φij〉 = λ

(t)
ij |φij〉 , λ

(t)
ij ≤ 2t ,

and the number operator in the interaction term also gives a contribution of
one:

Uh
(U)
i |φi〉 = λ

(U)
i |φi〉 , λ

(U)
i ≤ U/2 ,

so that a crude estimation, serving as an suitable spectrum shift constant C̃,
would be:

EHES ≤
∑
〈i,j〉

2t+
∑
i

U

2
≡ C̃ , (4.2)
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Now the Hamiltonian has to be put in a form that is compatible with the
expansion of the GS projection operator into projection strings, which is done
by rewriting each term as a AB nearest-neighbor interaction operator. The
kinetic term is already in this form, and the interaction term becomes:

UhU =
U

2

∑
i

ñi =
U

2z

∑
〈i,j〉

(ñi + ñj) .

It is suitable to add the eigenvalue spectrum shifting constant C̃ to the on-site
interaction term, as it is also diagonal in character:

UhU − C̃ =
∑
〈i,j〉

[
U

2z
(ñij − 2)− 2t

]
, ñij = ñi + ñj ,

and then, using the general expression for the ground state projecting operator
(3.1), it is written5:

π(k) ∼ (−H̃ + C̃)k

=

(
− 2t

∑
〈i,j〉

(−1)i
(

1

4
− qi · qj

)
(c̃†i c̃

†
j + c̃j c̃i)−

∑
〈i,j〉

[
U

2z
(ñij − 2)− 2t

] )k

∼

∑
〈i,j〉

Q̃ij(c̃
†
i c̃
†
j + c̃j c̃i) +

∑
〈i,j〉

[
1 +

U

4zt
(2− ñij)

]k

,

and for finite k, the operator π(k) can be expanded as a sum of operator
strings:

π(k) ∼
∑
r

P (k)
r , P (k)

r =
k∐
p=1

O
(∗)
ipjp

,

where the projector strings are simply sequences of the nearest-neighbor op-
erators found in the Hamiltonian, with operators O(∗)

isjs
, acting on nearest-

neighbor sites is and js are one of two types; either off-diagonal or diagonal,
corresponding to a singlet-projection and charge-modifying term or a charge-
counting term (including the eigenvalue shift constant) in a form as written in
the ground state projection operator, respectively.

OIij = Q̃ij

(
c̃†i c̃
†
j + c̃j c̃i

)
, OIIij = 1 +

U

4zt

(
2− ñij

)
. (4.3)

The action of the operator OIij = 1
2

(
T

(+)
ij + T

(−)
ij

)
on the charged valence bond

states is illustrated in figure 4.1.
5Again, one does not have to consider the normalization factor, as it cancels in the final

expression used for calculating quantities of the ground state.
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Figure 4.1: The action of the charge decorated singlet projection operator onto
charged valence bond states, with OI

ij defined in (4.3) and i, k ∈ A,
j, l ∈ B.

By this construction, the operator π(k) projects out an approximate ground
state from an arbitrary state for large k:

|GS〉 ∼
∑
r

P (k)
r |Ṽ0〉 =

∑
r

wr |Ṽr〉 ,

where wr is a product of all the factors from the nearest-neighbor operators
in the specific string obtained when applying it on the initial state, with each
factor evaluated as described above.

4.2.3 An expression for the GSE

As before, the goal is to find an approximate value for the ground state energy
level, and one may write:

E0 =
〈ψ| H̃ π(k) |Ṽ0〉
〈ψ|π(k) |Ṽ0〉

=

∑
r wr 〈ψ| H̃ |Ṽr〉∑
r wr 〈ψ|Ṽr〉

, k →∞ . (4.4)

Here, one may choose |ψ〉 as a generalized quasi-spin Néel state decorated with
quasi-charges.

Charge decorating the Néel state

Starting with an uncharged staggered quasi spin state |ΨN 〉, one may form a
linear combination of states, consisting of charge decorated Néel states corre-
sponding to all possible charge configurations on the lattice compatible with
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the restriction of balanced sub-lattice charge density:

|Ψ̃N 〉 =
∑
C.C.

(∏
p

c̃†ap c̃
†
bp
|ΨN 〉

)
.

The AB-site pairs, (ap, bp) , of the charge operators c̃†ap c̃
†
bp

giving a specific
charge configuration in the extended Néel state are defined such that

a1 < a2 < . . . < an , b1 < b2 < . . . < bn .

The overlap for all charge decorated valence bond states as in (4.1) are then
equal up to a sign from the contraction of the charge operators defining the
projected state and the corresponding term in the Néel state with matching
charge configuration. As noted above, the sequence of charge operator pairs,
{(c̃†a′p , c̃

†
b′p

)}, defining the charge state of |Ṽ 〉 may unambiguously be ordered so
that a′p = ap holds. The sequence {b′p} is then defined by this order:

〈Ψ̃N |Ṽ 〉 = 〈ΨN | c̃bn c̃an . . . c̃b2 c̃a2 c̃b1 c̃a1 c̃†a1 c̃
†
b′1
c̃†a2 c̃

†
b′2
. . . c̃†an c̃

†
b′n
|V 〉

= 〈ΨN | c̃bn . . . c̃b2 c̃b1 c̃
†
b′1
c̃†
b′2
. . . c̃†b′n

|V 〉 = (−1)m
(

1/
√

2
)N/2

.

The sign of the overlap is determined by commutating the operator sequence
c̃†
b′1
. . . c̃†b′n

into increasing order with regards to their index labels, with m being

the number of operator-pair commutations (i.e. c̃†bc̃
†
b′ = −c̃†b′ c̃

†
b) required to do

so.

Although the generalized Néel state of this construction has non-zero overlap
of each individual CDVB, it can not be guaranteed that the total overlap of the
projected ground state does not vanish. However, for small t/U , the ground
state should be found as a perturbation of the uncharged valence bond state
from the Heisenberg model with only small amplitudes for the charged basis
states, giving a sizable overlap.

A sampleable expression

Putting the Hamiltonian in a form of nearest-neighbor terms (4.3):

H̃ = −2t

∑
〈i,j〉

OIij +
∑
〈i,j〉

(
OIIij −

C̃ij
2t

) , C̃ij
t

= 2 +
U

zt
,

and using the charge decorated Néel state, one can rewrite the overlaps found
in the expression for E0 (4.4) :

〈Ψ̃N | H̃ |Ṽr〉 = t
∑
〈i,j〉

h
(r)
ij 〈Ψ̃N |Ṽ (ij)

r 〉 = t
∑
〈i,j〉

h
(r)
ij η

(r)
ij | 〈Ψ̃N |Ṽ (ij)

r 〉 | ,

〈Ψ̃N |Ṽr〉 = ηr| 〈Ψ̃N |Ṽr〉 | ,
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with hij evaluated as for the corresponding operators6 −2OIij , (−2OIIij +C̃ij/t),
and the sign function:

η =
〈Ψ̃N |Ṽ 〉
| 〈Ψ̃N |Ṽ 〉 |

.

Then the ground state can be written:

E0 =

∑
r wr

(
t
∑
〈i,j〉 h

(r)
ij η

(r)
ij | 〈Ψ̃N |Ṽ (ij)

r 〉 |
)

∑
r wr

(
ηr| 〈Ψ̃N |Ṽr〉 |

) =

∑
r wr

(
t
∑
〈i,j〉 η

(r)
ij h

(r)
ij

)
∑

r wrηr
.

The sign problem

The expansion coefficients in terms of the individual contribution from each
projection string can not be argued to be positive definite in the same way
as in the case of projecting out the Heisenberg ground state in the ordinary
valence bond basis. This is so when an odd number of off-diagonal operators in
a projection string give each gives a factor −1/2 as shown above, and thus the
amplitudes for some propagated states are negative. This becomes a problem
when these amplitudes are intended to be used as a statistical weight, and is
called the sign problem.

One may then consider a reweighted sampling process, where some positive
function Wr(wr) is defined and serves as a weight in an importance sampling
of a virtual system, defined by these modified weights and a corresponding
modified estimator of the quantity sampled. Using the standard Wr = |wr|,
and introducing a factor one as

∑
r |wr|/

∑
r |wr| , one obtains:

E0 =

∑
r |wr|

wr
|wr|

(
t
∑
〈i,j〉 η

(r)
ij h

(r)
ij

)
∑

r |wr|
wr
|wr|ηr

·
∑

r |wr|∑
r |wr|

=

[∑
r |wr|vr∑
r |wr|

]/[∑
r |wr|sr∑
r |wr|

]
,

where

vr =
wr
|wr|

(
t
∑
〈i,j〉

η
(r)
ij h

(r)
ij

)
, sr =

wrηr
|wr|

.

Here, an expression for the ground state energy is found as a quotient of two
weighted sums, the virtual energy and negative sign ratio respecively:

E0(t/U)

t
=
ev/t

sv
, ev/t =

∑
r |wr|(vr/t)∑

r |wr|
, sv =

∑
r |wr|sr∑
r |wr|

,

both individually interpretable as statistical expectation values in the sense
that the modified weights are positive definite. The ground state energy of the
T0-less Hubbard model on a specific lattice can then be calculated for some
choice of t/U by sampling both these estimators over the contributing projec-
tion strings, using the weight |wr| in the importance sampling scheme.

6Note that the energy parameters t and U only appear here in the form t/U .
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4.2.4 Updating the projection strings

In the simulation of the HB-model using Projector QMC in the VB-basis, the
simplistic algorithm that was used to generate new trial projection strings was
very efficient. The trial strings were generated by randomly changing which
neighboring pair of sites a number of projection operators in the projection
string was acting on, with the permuted operators and their respective trans-
lation selected uniformly. Any projector string generated in this way would
have a non-zero weight in the importance sampling, as no operator could an-
nihilate any valence bond state.

In this model with operators in the Hamiltonian introducing charge fluctua-
tions, unfortunately also introduce the possibility of killing a quasi-charged
VB-state with a misplaced quasi-charge operator. This happens when an off-
diagonal operator, OIij , in a projector string acts on a pair of sites, (i, j) ,
in an intermediate state where only one of the sites is occupied by a quasi-
charge. Such particular string has zero weight in the importance sampling,
i.e. represent an unimportant projector string. This fact makes a huge impact
on the probability of generating valid (non-zero weight) projection strings us-
ing a the simplistic updating algorithm as the one used in the simulation of
the HB-model. This is so as the only way of inserting (or removing) a single
off-diagonal operator acting on a neighboring site-pair, T (±)

ij , into (or from) a
non-zero weight projection string, is if all later off-diagonal operators in the
string acting on any site of this specific pair of sites only operate on both
sites. This effectively suppresses all attempts of updates involving T (±)

ij early
in the projection string, where the probability of an incompatible off-diagonal
operator later in the string is large.

Not being able to make updates of the off-diagonal operators early in the
projection string is a major issue, as efficiency in the sampling is very low
when most string generated are given weight zeros, and further the length of
the valid strings are effectively capped by this. The first part of the trial string
can be said to be static in terms of off-diagonal operators, and effectively only
serves as providing a random initial CDVB-state for sampling in the latter part.
To make Projector QMC work in this model then demands a better scheme of
generating the trial projector strings, which do not have the problem of having
an effective maximum projector string length.

Operator-loop updates

To remedy this one may consider an operator-loop update scheme, which is
constructed to handle this delicate structure of the quasi-charge operators in
the projection strings in a better way7. The idea of an operator-loop updating

7Although no proof can be provided, experience from extensive simulations strongly sug-
gest that the operator-loop updates does not generate any non-valid projector strings.
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(a) State propagation (b) Loop structure

Figure 4.2: The propagation of a four-site CDVB during application of a projection
string Pr (k = 5) with the intermediate states (with amplitudes and
phase factors neglected). Off-diagonal operators are represented by a
single line marking the sites on which they are operating, and diagonal
operators with double lines. The operator loop structure formed by this
projection string is also illustrated, with leg labels q written out.

scheme formulated here to handle the charge-decorated operators is inspired
by the loop-updates for valence-bond PMC as presented in [14].

As noted, the updating generally fails when an off-diagonal operator is intro-
duced or removed from the string, as after the update this or other downstream
off-diagonal operators may happen to be acting on a mixed charge state. Con-
sidering a single operator in the operator string and the nearest-neighboring
pair onto which it operates, one may track and form a list of all the operators
acting onto the lattice sites in question. Changing this specific operator could
only affect the operators found in this list, however the same operator might be
found in more than one list, if a corresponding list is formed for each operator
in the string. The basic idea of the operator-loop update is now to find (lim-
ited) sets of operators connected through these lists such that the operators in
a set can be simultaneously updated, yielding a valid projector string.

To this end, one may construct a loop structure, containing information on
which operators may affect which other operators in a specific update through
the intermediate charge states they act onto. In the following refer to figure
4.2. Constructing the operator-loop structure is done by assigning each leg of
each operator in the string a label as q = 4(p−1)+ l, with p being the position
of the operator in the string, and l = {1, 2, 3, 4} is the internal numbering
of the four legs of each operator. Thus 1 ≤ q ≤ 4k, for a string of length
k. The complete string is then transversed and a list is formed by noting
which leg is connected to each leg of each operator. If also the upstream and
downstream legs of an operator are said to be connected, an operator loop can
then be traced out by starting with an arbitrary operator leg and following
these connections between legs, noting which operators are forming the loop
as one goes along.

The actual update of the projection string consists of two distinct modes, of
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Figure 4.3: The closed loops formed by the projection string from figure 4.2, with
the affected charge states shown but the valence bonds left out for read-
ability. All four operator loops found in this example are flippable.

(a) Loops I and II flipped (b) Loop III flipped

Figure 4.4: The projection strings and charge states obtained when performing
type-flip loop updates on the projection string from figure 4.2 and 4.3.

which one is randomly chosen for each update of the sampling process. The first
is similar to the trivial random translation update as in the simulation of the
HB model, but here only the diagonal operators in the string are considered.
This poses no problem, as by (4.3) these operators always has a non-zero
eigenvalue for every possible configuration. The second is the actual loop
update, where the loop structure of the projection string is used (figure 4.3).
It can be observed that if the type of each operator connected to an operator-
loop is flipped, meaning OIij → OIIij and OIIij → OIij , the charge state outside
of the loop will be preserved. Assuming the original string is valid, no off-
diagonal operator in the string downstream of the updated loop will then risk
killing the propagating state. Thus, the update consists of type-flipping each
operator loop found in the string with some probability, as in figure 4.4.

Loop-flip updates where any diagonal operator operating on a mixed charge
state is to be flipped are excluded, as this update would kill the propagation
inside the loop. Charge fluctuations in the projected state is introduced by the
interpretation that an open operator loop connected to the projected state is to
be considered to be closed (through an unspecified hypothetical continuation
of the loop structure downstream of the projected state) and is allowed to be
flipped. Loops similarly connected to the initial state are however excluded,
as the initial state is to be kept fixed throughout the sampling.
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Ergodicity of the sampling scheme

In both update modes described above, there is a non-zero probability of sug-
gesting a trivial update, implying that the Markov chain of string configura-
tions is non-periodical. One may also find that all contributing string config-
urations are connected by at least one specific updating sequence. Observing
that it is possible to remove all off-diagonal operators from any projector string
one-by-one by translating the diagonal operators such that none are acting on
the sites of the last off-diagonal operator. Then the open loop formed by this
off-diagonal operator and the projected state can be flipped, changing the off-
diagonal operator to the corresponding diagonal one. Repeating this procedure
for all off-diagonal operators, the string can be reduced to a string consisting
of only diagonal operators. Since the procedure outlined is reversible in each
step, it is also possible to construct any valid string configuration from a string
of diagonal operators. As all such reduced strings are trivially connected by
translation updates, one can conclude that the Markov chain is also irreducible.
Thus, the sampling scheme is ergodic.

The candidate generating functions in both update modes described above are
symmetrical. The translation of diagonal operators trivially so, and also the
loop-update as the loop structure is preserved in a loop-flip update. With
the standard acceptance probability pacc = min(w′/w, 1) , detailed balance is
satisfied, and the limit distribution density in the generated Markov chain of
string configurations becomes proportional to the (modified) weights of the
strings.

Details of the implementation

As for PMC in the Heisenberg model, a set of convergence runs are first per-
formed for each lattice and value of t/U to find a suitable projector string
length, k. To obtain reasonable acceptance rates, the parameters of the up-
dating algorithm is tuned to reduce the number of operators changed in the
projection string for small values of t/U . This is because the weight of the pro-
jection strings may differ substantially by even very small changes when the
range of the diagonal operators diverge as t/U → 0. Here, the number of oper-
ators affected by the translation-mode update is set ∼ t/U and the probability
of type-fipping a valid operator loop in the loop-mode update ∼ t/U · n−1

l ,
where nl is the number of operators in the loop considered.

4.3 Variational expressions

When forming an expression for the ground state expectation value of arbitrary
operators, similar to the expression (3.8) in the ordinary valence bond basis,
it is not trivial to find an effective sampling scheme. This issue arises from
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the fact that the charge decorated valence bond states are mostly orthogonal,
and only states with matching charge configurations have non-zero overlap. A
formal expression can be written:

〈A 〉GS =

∑
l,r 〈Ṽ ′0 |P

†
l A Pr |Ṽ0〉∑

l,r 〈Ṽ ′0 |P
†
l Pr |Ṽ0〉

=

∑
l,r wlwr 〈Ṽl|A |Ṽr〉∑
l,r wlwr 〈Ṽl|Ṽr〉

=

∑l,r |wlwr|
(
wlwr

|wlwr| 〈Ṽl|A |Ṽr〉
)

∑
l,r |wlwr|

/∑l,r |wlwr|
(
wlwr

|wlwr| 〈Ṽl|Ṽr〉
)

∑
l,r |wlwr|

 .
As the expression is written, one should sample over the pairs of projection
strings with non-zero individual weight wi . However, only a few of these
pairs will have a non-zero overlap, and thus the divisor will tend to be very
small, leading to increased statistical inaccuracies of the quantity calculated.
Also, the matrix elements 〈Ṽl|A |Ṽr〉 are typically only non-zero for a small
fraction of left and right states (e.g. the Hamiltonian). One might be able to
effectively sample such operators by constructing an updating algorithm that
discards non-contributing configuration pairs.

However, for operators satisfying

〈Ṽl|Ṽr〉 = 0 ⇒ 〈Ṽl|A |Ṽr〉 = 0 ,

for all combinations of left and right projection strings (e.g. operators diagonal
in charge space), one may include the overlap in the weight and form the
expression:

〈A 〉GS =

[∑
l,rWl,r (ηl,ral,r)∑

l,rWl,r

]/[∑
l,rWl,rηl,r∑
l,rWl,r

]
,

with

Wl,r = |wlwr 〈Ṽl|Ṽr〉 | , ηl,r =
wlwr 〈Ṽl|Ṽr〉
|wlwr 〈Ṽl|Ṽr〉 |

, al,r =
〈Ṽl|A |Ṽr〉
〈Ṽl|Ṽr〉

.

The sampling can in this case be restricted to projection string pairs, Pl , Pr,
resulting in states with non-zero overlaps. The operator loop scheme can ac-
commodate this with minor adaptions, by updating both left and right pro-
jection string as if they where concatenated into one string of double length,
Pl,r = P †l Pr .

4.4 Results for the T0-less model

Simulations where performed on small 1D chains, with sizes ranging from L = 6
to L = 12, calculating the ground state energies for the T0-less Hubbard model
of these systems. Table 4.1 contains calculated values of per-site E0 = ev/sv
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Table 4.1: Calculated E0 compared to exact values.

L t/U E
(PMC)
0 /tL E0/tL ∆E/E0 k ev/tL sv

1/16 −0.172± 0.021 -0.1741 +0.012 −0.168± 0.022 0.976± 0.003
1/8 −0.327± 0.010 -0.3236 -0.009 −0.303± 0.010 0.924± 0.004

6 1/4 −0.528± 0.005 -0.5343 +0.011 8L −0.437± 0.003 0.828± 0.005
1/2 −0.750± 0.005 -0.7506 +0.001 −0.548± 0.003 0.730± 0.003
1 −0.913± 0.006 -0.9153 +0.002 −0.613± 0.003 0.671± 0.004
1/16 −0.180± 0.017 -0.1715 -0.047 −0.174± 0.018 0.966± 0.002
1/8 −0.321± 0.013 -0.3186 -0.006 −0.292± 0.012 0.908± 0.003

8 1/4 −0.524± 0.007 -0.5237 -0.001 7L −0.422± 0.006 0.805± 0.005
1/2 −0.724± 0.007 -0.7275 -0.003 −0.495± 0.004 0.683± 0.004
1 −0.877± 0.012 -0.8775 +0.001 −0.504± 0.004 0.575± 0.006
1/16 −0.172± 0.013 -0.1697 -0.012 −0.164± 0.013 0.954± 0.003
1/8 −0.324± 0.008 -0.3153 -0.029 −0.287± 0.008 0.886± 0.006

12 1/4 −0.523± 0.004 -0.5188 -0.008 5.75L −0.408± 0.003 0.781± 0.004
1/2 −0.723± 0.010 -0.7229 -0.000 −0.480± 0.005 0.664± 0.007
1 −0.873± 0.013 -0.8754 -0.002 −0.492± 0.004 0.564± 0.007

over a range of relative interaction strengths 1/16 ≤ t/U ≤ 1 obtained by
the PMC method presented in this chapter, and these values is compared to
the energy obtained using the Lanczos algorithm as presented in Appendix B.
Similar to the Heisenberg model, the per-site ground state energy is decreasing
for larger system size with t/U fixed.

As before, the error estimation is given the standard deviation of indepen-
dent walkers for each set of simulation parameters, as performing a binning-
type error estimation is rather involving for non-linear quantities [15]. Here,
nMCS = 4 · 105k is used, and as seen in table 4.1 and figure 4.5, the error is
increased for small t/U . This can be attributed to the issue of vanishing ac-
ceptance rates in the sampling. Then correlation of the sampled configurations
are increased, effectively reducing the number of samples form the simulation
run yielding the estimated E0, suggesting one could consider a t/U -dependent
scaling parameter, nMCS ∼ kγn(t/U). To reduce the computational load of the
simulation for the larger systems, k ∼ N1/2 is chosen, but then the estimated
E0 seems to be consistently lower than the exact value for L = 8, 12 , and more
so for small t/U . Thus, also the scaling of the projection string length should
be adjusted with t/U , setting k = Nγ(t/U).

With the scalings used in the simulations running time is linear in N , and the
time spent for each run for L = 12 is just over one hour with a single-CPU
computer. However, results strongly suggest a more costly scaling should be
used, at least in simulations for small values of t/U .

Comparing with the Heisenberg and Hubbard models

In figure 4.6(a), exact and calculated values of E0(t/U) for L = 6 are presented
along with exact results for the complete Hubbard model and the Heisenberg
model. Here one can see how the ground state is split up away from t/U � 1 in
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(a) Convergence of E0(t/U) in k, L = 12.
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Figure 4.5: Convergence runs of E0(t/U) for L = 12. Here, 4 · 105 k samples are
considered for each data point, divided over 10 walkers. Note that the
ratio ev/sv yielding the ground state approximation may converge in k
before ev and sv do so individually.

the models considered, and the effect of the on-site interaction energy penalty
for the charge-fluctuating systems is considerable as t/U grows.

In figure 4.6(b) the convergence rate parameter, is plotted for 0 ≤ t/U ≤ 1. It
is the ratio of the first excited energy in the sampled sector, EFES and E0 that
determines the rate of convergence for the ground state projection operator
π(k). Including the spectrum shift constant C̃ from (4.2), the error in norm for
the projection follow:

ε(k) ∼

(
EFES − C̃
E0 − C̃

)k

As can been seen, the ratio approaches 1 for t/U → 0, reducing efficiency of
the projection for small t/U . This can be contrasted by the corresponding
ratio for the Heisenberg model for a 6-site 1D chain, which is found to be 0.70.
Replacing this estimation, and using the exact value of EHES as shift constant
slightly increases the rate of convergence, but the ratio still approaches 1 as
t/U → 0. This is because the shifting constant diverges:

C̃ ≥ EHES ∼ U/t→∞ , t/U → 0 ,

and then the shifted energy gap vanish for small t/U , as the unshifted E0 and
EFES converges to the (bounded) values found in the corresponding Heisenberg
model in this limit.
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Figure 4.6: Per-site ground state energies of the Heisenberg, the complete and T0-
less Hubbard models for a 1D chain of 6 sites. The ratio determining the
rate of convergence for the ground state projection operator is plotted
for the spectrum shift constant used in the simulations C̃, and compared
to the ratio obtained when the shift is set exactly to EHES .

An effective kinetic energy

Considering how remarkably close the energy for the T0-less model follow the
complete Hubbard model, it may be tempting to try fudging the parameters
to make calculations of E0(t/U) in the T0-less model useful as estimations of
the complete Hubbard model. This may be done by scaling the t in the T0-less
Hamiltionian:

H̃ (t, U) = t(T+ + T−) + UhU → H̃ ′(t, U) = αt(T+ + T−) + UhU ,

replacing t with an effective value, aiming to compensate for the missing hop-
ping mode associated with the T0-term. Now E′0 for this modified Hamiltonian
can be obtained by considering:

H̃ ′(t, U)

t
= α(T++T−)+U/t hU = α

(
T+ + T− +

U

αt
hU

)
= α

(
H̃ (αt, U)

αt

)
,

Now let α = (1 + βt/U) and set β = 0.058, then the estimate

E′0(t/U)

t
= α

(
E0(αt/U)

αt

)
differ by . 1.5% compared to the exact Hubbard ground state energy over
0 ≤ t/U ≤ 1 for a 6 site chain, a more than three-fold improvement from the
un-fudged T0-less model in this range.
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Chapter 5

Conclusions

The method of projection quantum Monte Carlo simulations in the valence
bond basis combine the two very attractive qualities of simplicity and efficiency.
However, the impressive results from the projector Monte Carlo simulations
in the Heisenberg model was unfortunately not reflected in the results of the
adapted T0-less Hubbard model. This may in part be attributed to the issues
stemming from the unfortunate energy spectrum of this model, but the more
involved and time-consuming procedures for evaluating the weights and gen-
erating trial projection strings also affect the performance of this method and
prevent simulating systems of larger sizes. The results presented for this T0-
less model have too large errorbars for precise readings of E0 with the modest
running time invested, but they do give indications on how the PMC algorithm
scales for this type of system. Finding more accurate values is then a matter
of having devotion and resources available.

Future work

The concepts and notions for PMC simulations of the T0-less Hubbard model
formulated in this work are not constrained to being only applicable to 1D
systems. In fact, simulations in 2D (or higher dimensions) are readily imple-
mentable by the same method. For this to be practically feasible however,
efficiency of the implementation must be significantly improved.

By implementing an efficient method of generating suitable initial states for
subsequent ground state projection, the projection string length required can
be reduced significantly [7, 8]. In the referenced work, an iterative algorithm
is used to generate self-optimized valence bond states with a valence bond-
length distribution similar to the projected approximate ground state, which
is shown to to make excellent improvements in the efficiency of the projection
in the Heisenberg model. A similar method might be applicable for the T0-less
model, improving the rudimentary method of pre-projection.
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Appendix A

The Tight-binding model and
Wannier states

If one pictures the process of forming a crystal as bringing together isolated
atoms into a lattice, a one-electron Hamiltonian can be written as the atomic
Hamiltonian of one atom, plus a correction generated from the potentials of
all the surrounding ions in the lattice:

H (r) = Hatom(r) + δU(r) ,

If the correction can be considered small, an approximate one-electron eigen-
function can be written as a linear combination of atomic eigenfunctions (or-
bitals) φ(r − rj) of the isolated atomic Hamiltonians for each lattice site
[16].

ψk(r) =
∑
j

Ck,jφ(r − rj) =
1√
N

∑
j

exp(ik · rj)φ(r − rj) , (A.1)

where the particular form of writing the coefficients Ck,j is chosen so that the
wave function satisfies the Bloch condition. The expression to evaluate when
calculating the energy of a crystal state of a specific k is:

εk =
〈k|H |k〉
〈k|k〉

with:

〈k|H |k〉 =
1

N

∑
j,m

〈φm|H |φj〉 exp(ik · (rj − rm))

〈k|k〉 =
1

N

∑
j,m

〈φm|φj〉 exp(ik · (rj − rm)) .
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A.1 Tight-binding Hamiltonian

In the tight-binding model, it is assumed that the overlap of the orbitals is
small, and the only non-zero off-diagonal matrix elements in the Hamiltonian
connects neighboring states [16]:

〈φj |H |φj〉 = −E0

〈φm|H |φj〉 = −∆ , m, j : |rm − rj | = a

〈φm|φj〉 = δm,j .

If ρn is such a vector connecting a site to a nearest neighboring site, the
expression for the energy can be written:

εk = −E0 −∆
∑
n

exp(−ik · ρn) .

A.2 Wannier functions

The Wannier functions of a particular band, are defined as [16]:

w(r − rj) =
1√
N

∑
k

ψk(r) exp(−ik · rj) ,

where the sum is over all the wave vectors in the first Brillouin zone compatible
with the crystal volume, with associated wave function ψk(r). One finds that
the Wannier functions are orthogonal and often peaked around the associated
lattice site, rj . A wave function in this band can then be written

ψk(r) =
∑
j

w(r − rj) exp(ik · rj) ,

and comparing this form to the one-electron wave function for the tight binding
model (A.1), one concludes that the Wannier functions are here approximated
by the atomic orbitals.
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Appendix B

Exact diagonalization of 1D
spin systems

When constructing approximative calculation schemes such as PMC, it can
be very helpful to have dependable results from more traditional (but slower)
methods available for comparison and evaluation. Although these results may
only be available for small systems or in some restricted range of the parame-
ters, they may offer good value as a testing ground when identifying problems
and finding bugs in the implementation of new methods.

B.1 Heisenberg model

For the Heisenberg model in 1D there are exact analytical solutions available
for infinite spin chains through use of the celebrated Bethe anzats, which also
can be generalized to the Hubbard model [17]. Here, a simplistic numerical
method is presented for finding the ground state energy of a finite periodic
spin chain of an even number of sites.

For a L-site spin-1/2 chain, one may use a basis of specific spins per site:

|φ〉 = |s1, s2 . . . sL〉 , si = ↑ or ↓ ,

and the Hamiltonian is written:

H = J
∑
i

(
Si · Si+1 −

1

4

)
=
J

2

∑
i

(
2Szi S

z
i+1 −

1

2

)
+
(
S+
i S
−
i+1 + S−i S

+
i+1

)
≡ J

2

∑
i

Hi,i+1 .

One sees that the terms are only non-zero when operating on two adjacent
anti-parallel spins, where one the action is diagonal (with eigenvalue −1) or
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flips the spins in the state:

Hi,i+1 |. . . si, si+1 . . .〉 =

{
− |. . . si, si+1 . . .〉+ |. . . si+1, si . . .〉 , si+1 = −si

0 , si+1 = si .

The approach now is simply to go through all the basis states, apply the
Hamiltonian and collect the results, building a matrix representation of the
Hamiltonian column by column in this way. To do this one must label the basis
states in such way that both encoding (i.e. finding the proper label for a specific
spin configuration) and decoding (the reverse process) is efficient. Representing
a state by a binary string of the same length as the spin chain is useful for
this, and the the label of a state |φ〉 is given by the integer interpretation of
this binary string:

Iφ =
L∑
i=1

bi2
i−1 , where bi =

{
1 , si = ↑
0 , si = ↓ .

This representation of the states is convenient, as bit manipulations of integers
are efficiently implemented in most programming languages [18].

As the dimensionality of the Hilbert space in this basis grows exponentially
(dHB = 2L), the generated matrix can be considered to be very large even for
moderate sized systems1. Fortunately, it can also be considered to be sparse, as
there are only on the order of L non-zero elements in each column. Thus, it is
necessary to implement a scheme as Lanczos diagonalization to solve the final
eigenvalue problem. To further improve performance and expand the limit of
solvable systems, one may exploit symmetries of both the Hamiltonian itself
and the lattice to block diagonalize the matrix [5, pp 352-354]. For example,
using the rotation symmetry of the Hamiltonian, implying that total spin along
the z-axis

Sz =
∑
i

si

is preserved, subspaces of specific Sz can be diagonalized separately, reducing
the computational effort significantly.

B.2 Hubbard model

In the spin-charge separated basis for the half-filled Hubbard model, presented
in section 4.1, an approach of labeling the basis states can be found as an
extension of the binary-spin array above. One may simply use two binary

1Here, matrices exceeding 10000 × 10000 can be considered very large [5, p 343], corre-
sponding to roughly 13 half-spins.
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strings, and let the quasi-spin and quasi-charge states be encoded into separate
binary strings. The labeling definition can then be written:

Ĩφ =
L∑
i=1

(
bi2

i−1 + b′i2
L+i−1

)
, bi =

1

2
+ qzi , b′i = ñi .

Disregarding the unphysical states with odd charge number, the dimensionality
of the Hilbert space is dH = 2(2L−1) for a L-spin system in this basis.

The evaluation of the matrix elements is slightly more complicated, as one
must also consider possible phase factors from the fermionic charge operators
in the Hamiltonian:

H̃ = t (T0 + T±) + Uhu ,

with

T± = 2
∑
i

(−1)i
(

1

4
− qi · qi+1

)(
c̃†i c̃
†
i+1 + c̃i+1c̃i

)
≡
∑
i

T
(±)
i,i+1 ,

T0 = 2
∑
i

(
1

4
+ qi · qi+1

)
(c̃†i c̃i+1 + c̃†i+1c̃i) ≡

∑
i

T
(0)
i,i+1 ,

hU =
1

2

∑
i

c̃†i c̃i ,

where i+ 1 = L+ 1 is taken to be equal to one, and (−1)i = ±1 for i even and
odd, respectively. Treatment of the diagonal interaction term hu is trivial, and
also the quasi-spin factor of the kinetic terms is straight forward, following the
treatment for the Heisenberg model.

The T± term

Fixing the phase of a basis state with some charge configuration by defining it
as a sequence of charge operators operating onto a uncharged spin state:

|φ〉 ≡ c̃†k1 c̃
†
k2
. . . c̃†kn |q1, q2, . . . qL〉 , 1 ≤ k1 < k2 < . . . < kn ≤ L ,

Then, first consider the action of c̃†i c̃
†
i+1 for 1 ≤ i ≤ L−1 onto this state2:

c̃†i c̃
†
i+1 |φ〉 = c̃†i c̃

†
i+1

(
c̃†k1 . . . c̃

†
kl
c̃†km . . . c̃

†
kn

)
|q1 . . . qL〉 , kl < i , i+ 1 < km ,

and one finds the result after commutating the operators to the correct position
in the sequence:

c̃†i c̃
†
i+1 |φ〉 = (−1)2l

(
c̃†k1 . . . c̃

†
kl︸ ︷︷ ︸

l ops.

c̃†i c̃
†
i+1c̃

†
km
. . . c̃†kn

)
|q1 . . . qL〉 ,

2In the following, it is assumed that the states considered are such that none of the the
charge operators applied trivially annihilate the state.
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where l is the number of operators in the sequence for which kr < i . Similarly,
for the annihilation term one obtains:

c̃i+1c̃i |φ′〉 = c̃i+1c̃i

(
c̃†k1 . . . c̃

†
kl
c̃†i c̃
†
i+1c̃

†
km
. . . c̃†kn

)
|q1 . . . qL〉

= (−1)2l
(
c̃†k1 . . . c̃

†
kl︸ ︷︷ ︸

l ops.

c̃†km . . . c̃
†
kn

)
|q1 . . . qL〉 .

The term operating over the periodic boundary is particular:

c̃†Lc̃
†
1 |φ〉 = c̃†Lc̃

†
1

(
c̃†k1 . . . c̃

†
kn

)
|q1 . . . qL〉 = (−1)n+1

(
c̃†1 c̃
†
k1
. . . c̃†kn︸ ︷︷ ︸
n ops.

c̃†L

)
|q1 . . . qL〉 ,

and

c̃1c̃L |φ′〉 = c̃1c̃L

(
c̃†1c̃
†
k2
. . . c̃†kn−1

c̃†L

)
|q1 . . . qL〉

= (−1)n−1
(
c̃†k2 . . . c̃

†
kn−1︸ ︷︷ ︸

n−2 ops.

)
|q1 . . . qL〉 .

As 2l is even and n±1 is odd, as n must be even for physical states, the matrix
element for the boundary term in T± picks up an extra sign.

The T0 term

Continuing the calculation as above one finds for 1 ≤ i ≤ L− 1:

c̃†i c̃i+1 |φ〉 = c̃†i c̃i+1

(
c̃†k1 . . . c̃

†
kl
c̃†i+1c̃

†
km
. . . c̃†kn

)
|q1 . . . qL〉 , kl < i , i+1 < km ,

so that

c̃†i c̃i+1 |φ〉 = c̃†i c̃i+1 = (−1)2l
(
c̃†k1 . . . c̃

†
kl︸ ︷︷ ︸

l ops.

c̃†i c̃
†
km
. . . c̃†kn

)
|q1 . . . qL〉 ,

and also the term for c̃†i+1c̃i has an even number of sign factors.

Finally, fermionic sign factor the periodic terms are calculated to be:

c̃†Lc̃1 |φ〉 = c̃†Lc̃1

(
c̃†1c̃
†
k2
. . . c̃†n

)
|q1 . . . qL〉 = (−1)n−1

(
c̃†k2 . . . c̃

†
kn︸ ︷︷ ︸

n−1 ops.

c̃†L

)
|q1 . . . qL〉 .

Again, the c̃†1c̃L term is treated similarly and one finds that also the matrix
element for the periodic term in T0 has an extra sign factor.
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Appendix C

The Valence bond basis and
Singlet projection operators

Here follows a short summary of the construction and properties of the valence
bond basis as presented by Beach and Sandvik [10].

When working with the singlet sector of the Hubbard model it may be conve-
nient use the valence bond basis instead of using the “traditional” basis of Sz

eigenstates. In the valence bond basis, states are represented by a particular
way of pairing up the spins into singlets

|ψ〉 =
∏
p

(ip, jp) , (i, j) =
1√
2

(
|↑i↓j〉 − |↓i↑j〉

)
,

and from this construction the valence bond states are invariant under spin
rotations.

C.1 Valence bond operators

The spin operators are written using bosonic operators bi,s and a occupation
constraint of one bosonic particle per site:

Si =
1

2

∑
s,s′

b†i,sσs,s′bi,s′ ,
∑
s

b†i,sbi,s = 1 ,

and the valence bond operator is defined by:

χµ†ij =
1√
2

∑
s,s′

τµs,s′b
†
i,sb
†
j,s′ , τµ = (iσ2, iσ3, 1 ,−iσ1) .

These valence bond operators create eigenstates of the singlet projection op-
erator Qij = 1/4 − Si · Sj , corresponding to one singlet (µ = 0) and three
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triplets:

χµ†ij |vac〉 =



1√
2

(|↑i↓j〉 − |↓i↑j〉) , µ = 0 ,
1√
2

(|↑i↑j〉 − |↓i↓j〉) , µ = 1 ,
1√
2

(|↑i↑j〉+ |↓i↓j〉) , µ = 2 ,
1√
2

(|↑i↓j〉+ |↓i↑j〉) , µ = 3 ,

so that:

Qijχ
µ†
ij |vac〉 = δµ0χµ†ij |vac〉 .

Using the completeness relation:∑
µ

χµ†ij χ
µ
ij = 1 ,

and

Si · Sj = −3

4
χ0†
ij χ

0
ij +

1

4
χ†ij · χij .

which follows from construction, one may write the singlet projection operator
using valence bond operators:

Qij = χ0†
ij χ

0
ij .

C.2 AB-Valence bond basis

The basis states of the valence bond basis are formed by creating singlets out
of pairs of spins in a lattice of size N , using the singlet valence bond operator
defined above. A valence bond state |V 〉 is then written:

|V 〉 = V † |vac〉 =
∏
b

χ0†
ibjb
|vac〉 ,

and the basis defined by this spans the S = 0 subspace for a system consisting
of an even number of spin-half particles.

Dividing the square lattice into two disjoint sublattices A and B containing
N/2 sites each, the basis can be restricted to singlets only connecting spins on
different sublattices. The number of states in this AB-restricted valence bond
basis is reduced from N ! to (N/2)!, but it still spans the singlet sector, as any
AA orBB-bond can be rewritten using onlyAB-bonds from the relation:

χ0†
ij χ

0†
kl + χ0†

il χ
0†
jk + χ0†

lj χ
0†
ik = 0 .

The restriction to AB-singlet bonds also gives a way of specifying a sign con-
vention for the valence bond states, relating to the corresponding valence bond
operator, so that χ0†

ij = −χ0†
ji creates a singlet with i ∈ A and j ∈ B .
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C.3 Singlet projection in the valence bond basis

Under repeated applications of singlet projection operators Qij , as when pro-
jecting out the ground state, the valence bond states evolves by remapping the
singlet pairing in the states.

Starting with the action of Qij onto valence bond state |V 〉:

Qij |V 〉 = χ0†
ij χ

0
ij V

† |vac〉 = χ0†
ij χ

0
ij

(
χ0†
a1b1

χ0†
a2b2

. . . χ0†
aN bN

)
|vac〉 ,

and assuming that the string V † contains a valence bond operator matching
the indices of the singlet projection operator Qij , i.e. (am, bm) = (i, j). Then,
through the use of

[χ0
ij , χ

0†
ij ] |vac〉 = |vac〉 ,

one finds

Qij |V 〉 = χ0†
ij

[
χ0
ij ,
(
χ0†
a1b1

χ0†
a2b2

. . . χ0†
ij . . . χ

0†
aN bN

)]
|vac〉

= χ0†
ij

(
χ0†
a1b1

χ0†
a2b2

. . . χ0†
aN bN

)
|vac〉 = |V 〉 .

Thus, this state is an eigenstate of Qij with eigenvalue 1 .

If there is no matching valence bond operator in V †, then there must be two
operators χ0†

il and χ0†
kj in V †, each matching one of the indices in Qij . Now,

using the relation:

[χ0
ij , χ

0†
il χ

0†
kj ] |vac〉 =

1

2
χ0†
kl |vac〉 ,

the action of the singlet projection operator is found to be

Qij |V 〉 = χ0†
ij

[
χ0
ij ,
(
χ0†
a1b1

χ0†
a2b2

. . . χ0†
il . . . χ

0†
kj . . . χ

0†
aN bN

)]
|vac〉

=
1

2
χ0†
ij

(
χ0†
a1b1

χ0†
a2b2

. . . χ0†
kl . . . χ

0†
aN bN

)
|vac〉 =

1

2
|V ′〉 .

Here the singlet projection operator modifies the initial valence bond state so
that two of the singlets in |V 〉 are reconfigured, giving a modified state |V ′〉
and also adds a factor 1/2 to the amplitude of the state.
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Appendix D

Monte Carlo Simulations using
the Metropolis algorithm

Monte Carlo methods allow for making effective approximative evaluations of
various expectance values from a broad class of problems in statistical and
quantum physics [11, pp 185]. In classical statistical physics, a general ex-
pectance value of some quantity is expressed as a weighted sum of the state-
specific value of the quantity over the available states in the phase space of the
system

〈A 〉 =
1

Z

∑
S∈Ω

W (S)A (S) , Z =
∑
S∈Ω

W (S) .

D.1 The Metropolis algorithm

An approximate value for this expression can now be obtained by the Metropo-
lis algorithm, in which a Markov chain of states S(1), S(2), . . . distributed with
probability densityW (S)/Z, is formed by a random walk through phase space.
The expenction value is then computed by sampling the quantity in question
for the states visited

〈A 〉 =
1

N

N∑
n=1

A (S(n)) , N →∞ .

For the states found in the Markov chain to be of the desired distribution, it
is sufficient to construct an ergodic random walk in which the probability of
making a step from S to S′ satisfies detailed balance [15]. Finite ergodic Markov
chains have a well defined limit distribution, independently of starting position
[19] and the condition of detailed balance assures that this limit distribution
is proportional to the statistical weights of the physical system. For finite
Markov chains, irreducibility and non-periodicity implies ergodicity.
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METROPOLIS ALGORITHM

In the Metropolis algorithm the state S′ = S(n+1) in the sequence is generated
from the S = S(n) in an updating scheme performed in two distinct steps,
where the first consisting of generating a suggested update, or a trial state,
and then accepting or rejecting that update. The total transition probability
p(S → S′) of the update is then also split into two factors corresponding to
the probabilities of the two distinct steps of the transition S → S′

p(S → S′) = t(S → S′)a(S → S′) ,

where t(S → S′) and a(S → S′) denote the probabilities of choosing the specific
trial step by the updating algorithm used and accepting it, respectively.

The condition of detailed balance [15]:

W (S)p(S → S′) = W (S′)p(S′ → S)

is satisfied if the trial states are generated such

t(S → S′) = t(S′ → S) ,

and the acceptance probability of the generated trial states is set as

a(S → S′) = min

(
W (S′)

W (S)
, 1

)
.

D.2 Autocorrelation and error estimation

The major drawback of using an random walk to generate states of a specific
distribution, as in the Metropolis algorithm, is that the sequence of states
are not independent of one another. It is then necessary to consider these
correlations to ensure convergence of the simulation and to make accurate
error calculations [15].

The autocorrelation function for samples of a quantity A from the sequence
of configurations in the Markov chain is defined as [5, p 193]:

C(k) = 〈AnAn+k〉 − 〈An〉2 .

From this, the normalized integrated correlation time is formed:

τ =

K∑
k=−K

C(k)

C(0)
, K →∞ .

Finally, the estimation of the statistical error in the calculated quantity is
found by considering the statistical error estimate assuming uncorrelated sam-
ples, and then introducing a correction to the number of actual (uncorrelated)
samples used:

ε =
σ(An)√
N/τ

.
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