
Stripe order and pairing in the Cuprate 
Superconductors

Mats Granath 
University of Gothenburg, Sweden

University of Warwick
February 17, 2011.

1

0

k
y
 (
π

/a
)

10
kx (π/a)

M
D

C
 I

n
te

n
si

ty

-0.1

0

E
 -

 E
F
 (

eV
)

0.70.60.50.40.3 0.70.60.50.4 0.70.60.50.4

Momentum (π/a)

0.70.60.50.4 0.70.60.50.4

Γ (0,0)

Y (π,π)

a

b c d e

1
2

3
4

1 2 3 4

f

5

High

Low

Low

High
5

X 10

LM

LP

LSLPS

LP

LM

LS

LPS

FIG. 1: Fermi surface and band structure of the La-Bi2201 UD18K sample (underdoped, Tc=18

K) measured at a temperature of 14 K. (a). Photoemission intensity at the Fermi energy (EF ) as

a function of kx and ky. Four Fermi surface sheets are resolved in the covered momentum space,

marked as LM for the main sheet, LP for the Fermi pocket, and LS and LPS for the others. (b-f)

show band structure (bottom panels) and corresponding momentum distribution curves (MDCs)

at the Fermi level (upper panels) along five typical momentum cuts (cuts 1 to 5) as labeled in Fig.

1a. To see the weak features more clearly, the original MDCs (thin grey lines) in the upper panel

are expanded 10 times and plotted in the same figures (thick black lines).
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Fig. 1. (A) Spectra taken at one atomically resolved
location on an underdoped Bi2Sr2CaCu2O8+d sample
(Tc = 61 K, UD61) at various temperatures. The
spectra show two features at low temperature, the
smaller of which (red arrow) disappears at higher
temperatures. The higher-energy feature ∆0 (black ar-
row) compares well with the anti-nodal gap measure-
ments from ARPES. (B) ∆0 sorted, averaged spectra at
13 K from 8192 spectral measurements on another
underdoped Bi2Sr2CaCu2O8+d sample (Tc = 58 K,
UD58), for different temperatures and values of ∆0.
The spectra are normalized by the mean over the
whole bias range shown (each offset by 0.5). (C) A
spatial map at 13 K showing the variation of ∆0. The
colored regions represent areas where ∆0 is nearest
to the correspondingly colored spectrum in (B).
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Fig. 2. (A) Average dI/dV spectra (orange circles)
from D0 sorted spectra on sample UD58 and the
fit (solid blue line) as described in the text. The
procedure is applied separately to the positive and
negative sides. The curves are offset by 35 pS. (B)
The weights of the corresponding positive side fits
in (A), expressed as a fraction of the total weight
for each gap size (each offset by 0.15). (C)
Cumulative weights (x axis) obtained by summing
the corresponding histogram for each gap size (y
axis). The x axis would be proportional to the
angle around the Fermi surface for a cylindrical
band structure. (D) Gap as a function of angle as
extracted from the fits, using the ARPES band
structure (27).
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The cuprate superconductors
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figure, D.  Bonn

Concepts in High Temperature Superconductivity 131

positions k± = Q ± 2πê/λ where ê is the unit vector perpendicular to the
stripe direction, λ is the stripe period, and Q is an appropriate fiduciary
point. For charge stripes, Q is any reciprocal lattice vector of the underlying
crystal, while for spin stripes, Q is offset from this by the Néel ordering vec-
tor, < π, π >. Where both spin and charge order are present, the fact that
the charge stripes are associated with magnetic antiphase domain walls is
reflected in the fact that λspin = 2λcharge, or equivalently kcharge = 2kspin.

La1.6−xNd0.4SrxCuO4 (LNSCO) is stripe ordered, and the onset of stripe LNSCO
ordering with temperature is clear. Fig. 47 shows data from neutron scat-
tering, NQR, and susceptibility measurements [413]. In this material, charge
stripes form at a higher temperature than spin stripes. Note also that static
charge and spin stripes coexist with superconductivity throughout the super-
conducting dome. In fact experiments reveal quartets of new Bragg peaks, at
Q±2πx̂/λ and Q±2πŷ/λ. In this material, the reason for this is understood
to be a bilayer effect—there is a crystallographically imposed tendency for
the stripes on neighboring planes to be oriented at right angles to each other,
giving rise to two equivalent pairs of peaks. Charge and spin peaks have also LBCO
been detected [443] in neutron scattering studies of La1.875Ba0.125−xSrxCuO4.

Fig. 47. Blue data points refer to the onset of charge inhomogeneity. Red data
points denote the onset of incommensurate magnetic peaks. Green data points are
the superconducting Tc. From Ichikawa et al. [413]

Spin stripe order has also been observed from elastic neutron scatter-
ing in La2−xSrxCuO4 (LSCO) for dopings between x = .02 and x = .05 LSCO
where the material is not superconducting at any T ; these stripes are called

Ichikawa et al, PRL 2001

La2-xSrxCuO4
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The Pseudogap

Homes et al, PRL 1994

NMR,  optical conductivity,  Raman,  tunneling, photoemission,...

Early on it was suggested to be due 
to spin pairing above Tc, 

(e.g. NMR by Warren et al PRL 1993)

4

cally shown in Fig. 14. How does the pseudogap vary
with doping, temperature, and magnetic field? How does
the pseudogap scale with Tc and the superconducting
gap? Is there a universal HTS doping phase diagram?

In this section we review the key STS results related
to the pseudogap under different experimental condi-
tions. In Sec. VI.A we describe the T dependence of the
LDOS of Bi2212, Bi2201, and Y123 and analyze the
scaling relations between the pseudogap and supercon-
ducting gap. In Sec. VI.B we address the observation of
the pseudogap at low temperatures inside vortex cores
and on disordered surfaces. In Sec. VI.C we discuss the
doping phase diagram that results from tunneling ex-
periments reviewed here and finally, in Sec. VI.D, we
highlight the key results of this section. The connection
between the pseudogap and recently reported experi-
ments revealing spatial modulations in the LDOS is dis-
cussed separately in Sec. VIII.

A. Temperature dependence of the local DOS

By the end of the 1980s bulk techniques already re-
vealed unconventional normal-state behavior above Tc,
but it took about a decade to obtain sufficient sample
and surface quality to evidence the PG spectral signa-
ture directly in the DOS using ARPES !Ding et al., 1996;
Loeser et al., 1996" and STS !Renner, Revaz, Genoud, et
al., 1998".

Measuring the T dependence of the LDOS by STM is
a challenge. The difficulty is to prevent the tip from
shifting relative to the sample when the temperature is
changed, due to uncompensated thermal expansion co-
efficients in the experimental setup. If the tip does shift,
as is usually the case, variations in the I!V" characteris-
tics may be due not only to temperature but also to the
different tunneling locations, especially if the spectro-
scopic properties are not homogeneous over sufficiently
large areas as discussed in Sec. V. Not surprisingly, there
are only a few relevant T-dependent STM studies of
HTS’s. The first successful STM experiments were ob-
tained on Bi2212 !Renner, Revaz, Genoud, et al., 1998;
Matsuda et al., 1999b", followed by Y123 !Maggio-Aprile
et al., 2000" and Bi2201 !Kugler et al., 2001".

1. Case of Bi2212

Historically, the first tunneling results revealing the
PG were reported on Bi2212 by Tao et al. !1997" on
planar junctions and by Renner, Revaz, Genoud, et al.
!1998" using a STM junction. These experiments showed
unambiguously that HTS’s do not follow what the BCS
theory predicts, namely, that the superconducting gap
closes at Tc. In this theory, indeed, both the pairing and
phase coherence are lost simultaneously at Tc. The ori-
gin of this behavior is illustrated by the reduced gap
value 2! /kBTc=3.5 for an s-wave BCS superconductor,
indicating that, at the mean-field critical temperature Tc,
thermal fluctuations are strong enough to overcome the
pairing energy 2!. In the case of underdoped !UD"
Bi2212, reduced gap values as high as 20 have been re-

ported !Miyakawa et al., 1999", providing a strong hint
that the T dependence of the superconducting gap of
HTS’s might be very different from the BCS mean-field
behavior.

Figure 22 illustrates the T dependence of quasiparticle
DOS of niobium !Pan, Hudson, and Davis, 1998",14 a
conventional BCS superconductor, and of UD Bi2212
!Renner, Revaz, Genoud, et al., 1998". The most striking
difference from Nb is the existence in Bi2212 of a clear
pseudogap at Tc. The pseudogap has basically the same
amplitude as the superconducting gap. Both appear to
be essentially T independent, seemingly filling up rather
than closing with increasing temperature !Tao et al.,
1997" except for a slight tendency of the pseudogap to
increase upon approaching T* !see Fig. 26, below". We
point out that, although it is well known that in Nb the
gap is closing, this is not obvious when looking at Fig.
22!a". The superconducting gap of Nb is of the order of
1.5 meV and Tc#9 K. Thermal smearing therefore pre-
vents one from following the coherence peaks in the
DOS up to Tc. In contrast, in the case of UD Bi2212
shown in Fig. 22!b", the gap magnitude is about 44 meV
for Tc=83 K. Hence !p"kBTc and thermal smearing ef-
fects relative to !p are much weaker. If the T depen-
dence of the gap were BCS-like, one should thus clearly
see it in Fig. 22!b". This is not the case.

The observation that in Bi2212 the gap magnitude is
to first approximation T independent rather than follow-
ing a BCS-like dependence is highlighted in Fig. 23.
Here the 4.2-K data of Fig. 22!b" are fitted by a d-wave

14Note the different gap amplitude compared to Fig. 10!a" for
the same experimental configuration, which Pan, Hudson, and
Davis !1998" tentatively ascribe to the detailed geometry, struc-
ture, and composition of the Nb tip apex.

FIG. 22. !Color online" T dependences of the DOS measured
by STM. !a" Junction between a gold sample and a niobium tip
with Tc#9 K, !p=1.5 meV. Adapted from Pan, Hudson, and
Davis, 1998. !b" Junction between an iridium tip and UD
Bi2212 with Tc=83 K, !p=44 meV, and T* near room tem-
perature. Adapted from Renner, Revaz, Genoud, et al., 1998.

378 Fischer et al.: Scanning tunneling spectroscopy of high-…
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Pairing from strong singlet correlations

Spin liquid or Resonating Valence Bond(RVB)

Doping a Spin liquid

Science 1987

5

Hard to find in 2D, generally broken spin rotation 
invariance and gapless spin excitations
Heisenberg model in 2D has Antiferromagnetic order, no spin gap.

Undoped cuprates are Antiferromagnetic.

P.W. Anderson
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Spin liquid in one dimension, spin ladder
Haldane 1983; Rice at al.  1993

DMRG,   White et al PRL  1994
Even leg Heisenberg ladders has gap that decrases 

exponentially with the number of legs

� � Je�.68nleg

H = J
�

<i,j>

(⇧Si · ⇧Sj �
1
4
) = �J

�

<i,j>

P 0
i,j

S. Chakravarty,  PRL 1996

But the cuprates are 2D not 1D?

6
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Enter Stripes

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Tranquada et al, Nature 1995

7

Emery and Kivelson 1993, pairing from spin gap (RVB state) on stripes.

Charge density wave

Spin density wave

Zaanen and Gunnarsson, Machida, 1989
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Xu et al, Nature Physics 2009, BSCCO

6 John M. Tranquada

-0.2 -0.1 0 0.1 0.2
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(0.5+h, 0.5)  (rlu)

 E
 /

 J

La
1.90

Sr
0.10

CuO
4

La
1.875

Ba
0.125

CuO
4

La
1.84

Sr
0.16

CuO
4

YBa
2
Cu

3
O

6.5

YBa
2
Cu

3
O

6.6

Fig. 8.3. Comparison of measured dispersions along Q2D = (0.5 + h, 0.5) in
La2−xSrxCuO4 with x = 0.10 (up triangles) and 0.16 (down triangles) from
Christensen et al. [40], in La1.875Ba0.125CuO4 (filled circles) from [42], and in
YBa2Cu3O6+x with x = 0.5 (squares) from Stock et al. [28] and 0.6 (diamonds)
from Hayden et al. [27]. The energy has been scaled by the superexchange energy
J for the appropriate parent insulator as given in Table 8.1. For YBa2Cu3O6.6, the
data at higher energies were fit along the [1,1] direction; the doubled symbols with
bars indicate two different ways of interpolating the results for the [1,0] direction.
The upwardly-dispersing dashed curve corresponds to the result of Barnes and Riera
[45] for a 2-leg spin ladder, with an effective superexchange of ∼ 2

3
J ; the downward

curve is a guide to the eye.

For optimally doped YBa2Cu3O6+x, the measured dispersive excitations
are restricted to a narrower energy window, as shown in Fig. 8.11. Neverthe-
less, excitations are observed to disperse both downward and upward from
Er, and the qualitative similarity with dispersions at lower doping is obvious.

Anisotropy of the magnetic scattering as a function of Q2D can be mea-
sured in specially detwinned samples of YBa2Cu3O6+x, as the crystal struc-
ture has an anisotropy associated with the orientation of the CuO chains.
(Note that it is a major experimental challenge to detwin samples of suf-
ficient volume to allow a successful inelastic neutron scattering study.) An
initial study of a partially detwinned sample of YBa2Cu3O6.6 by Mook et

Christensen et al PRL 2004, Stock et al PRB 2005, 
Hayden et al Nature 2004, Tranquada et al Nature 2004

Universal Spin Correlations, hourglass spectrum

8

Magnetic Excitations in a Bond-Centered Stripe Phase:
Spin Waves Far from the Semiclassical Limit

Matthias Vojta and Tobias Ulbricht
Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, 76128 Karlsruhe, Germany

(Received 23 February 2004; published 15 September 2004)

Using a spin-only model, we compute spin excitation spectra in a bond-centered stripe state with
long-range magnetic order. We employ a bond operator formalism, which naturally captures both
dimerization and broken spin symmetry in a unified framework. At low energies, the spin excitations
resemble spin waves, but at higher energies they are very similar to spin-one excitations of isolated spin
ladders. Our theory does well describe neutron scattering data [J. M. Tranquada et al., Nature (London)
429, 534 (2004)] on La2!xBaxCuO4, pointing towards bond order in this material.

DOI: 10.1103/PhysRevLett.93.127002 PACS numbers: 74.72.–h, 75.10.Jm

For a number of cuprate superconductors it has been
established, most notably by neutron scattering tech-
niques [1–3], that states with incommensurate spin and
charge correlations, commonly referred to as stripes, ap-
pear over a significant range of the phase diagram. While
in some materials these correlations remain dynamic
[4,5], in others they become static and apparently coexist
with superconductivity at lowest temperatures. The role of
these stripes for superconductivity has been discussed
extensively [6–10], but is at present not fully understood.

Recent experiments [11] have mapped out the spin
excitations in an ordered stripe phase of La2!xBaxCuO4
at a hole doping of x " 1

8 . In this Letter, we will present a
consistent theoretical description of these neutron scat-
tering data for all energies.

For cuprates with dopings near x " 1
8 the spatial period

of the charge order is found to be four lattice spacings.
Furthermore, the period of the spin modulation equals
twice the charge modulation period, i.e., the ordering
wave vectors obey Kc " 2Ks. The microscopic structure
of stripes has not yet been fully elucidated. Regarding the
symmetry of the charge modulation w.r.t. reflection on a
Cu-Cu bond axis one distinguishes bond-centered and
site-centered stripes [10]. Theoretical proposals based
on doping a paramagnetic Mott insulator predict the
coexistence of superconductivity with bond order [4,12],
compatible with bond-centered stripes. On the other hand,
theories starting from the ordered antiferromagnet and
favoring site-centered stripes have also been put forward.
For states with spin and charge stripe order it has been
suggested that the magnetism in the hole-poor regions
resembles that of the undoped antiferromagnet, with
local #!;!$ ordering; then the stripes act as antiphase
domain walls in the magnetic background.

The neutron scattering spectra on La2!xBaxCuO4 [11]
indicate a linearly dispersing mode near the ordering
wavevector at low energies, not inconsistent with a
spin-wave picture. However, at higher energies conven-
tional spin waves (as have been employed in Refs. [13,14]
to stripe-ordered phases) do not appear to describe the

data, which instead are closer to what one expects for
gapped two-leg ladders.

The purpose of this Letter is to point out that there
exists a simple unified description of the spin dynamics at
all energies. The crucial point is the coexistence of di-
merization and weak magnetic order in bond-centered
stripes. The spin ordering in the hole-poor region is far
from the semiclassical limit (this is the limit described by
conventional spin waves), but instead is better understood
as being close to a quantum phase transition where mag-
netic order disappears. We capture this physics using a
spin-only model for the hole-poor regions, assuming that
the hole-rich stripes provide a weak coupling between
them. For simplicity, we focus on stripe states with
charge-order period of four sites, where both the hole-
rich and hole-poor regions have width two. Thus we
consider a Heisenberg model with a geometry shown in
Fig. 1, with couplings J, J0, Js for rungs, legs, and across
the stripes, respectively. J and J0 are antiferromagnetic,
whereas Js is much weaker and ferromagnetic, mimick-
ing the antiphase property of the stripe. This model has a
quantum paramagnetic singlet phase and a magnetically
ordered phase with ordering wavevector Ks " #3!=4;!$
in units of the Cu square lattice. The transition will occur
at a critical Jcrs which depends on J; J0. For jJsj of order
J; J0 one expects a well-ordered state with negligible

JJ’
Js

FIG. 1. Sketch of the bond-centered stripe state considered
here. We use a 2D spin-only model, where the effect of the hole-
rich stripes is to mediate a weak coupling, Js < 0, between
hole-poor regions, accross the hole-rich ones. The hole-poor
regions are spin ladders, characterized by couplings J; J0. The
unit cell consists of eight Cu sites, i.e., four spins in the
effective Heisenberg model.

VOLUME 93, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S week ending
17 SEPTEMBER 2004

127002-1 0031-9007=04=93(12)=127002(4)$22.50  2004 The American Physical Society 127002-1

M. Vojta and Ulbricht, PRL 2004, 
Seibold and Lorenzana PRL 2005, 

Yao et al  PRL 2006

low energy, spin waves
high energy, spin ladder magnons
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that the energy D0(p) where BQP interference disappears and the spa-
tially averaged energy !DD0(p) at which electronic homogeneity is lost in
Bi2Sr2CaCu2O81d (ref. 26) are indistinguishable within their uncer-
tainties. The function D(hk)5DQPI[Bcos(2hk)1 (12B)cos(6hk)],
where DQPI is the theoretical superconducting energy gap maximum
at hk5 0, p/2, is required to fit the measured D(hk), as shown by the
fine solid lines in Fig. 3b. We find that as p decreases, DQPI increases
rapidly and B decreases slowly. Finally, the maximum energy of the
fitted superconducting gap DQPI is always in good quantitative agree-
ment with the spatially averaged pseudogap maxima ÆD1æ as derived
from the particle–hole-symmetric peaks in the spectra (Fig. 1b); this
relationship is shown in the inset to Fig. 3b.

r-space structure of pseudogap excitations

Next we examine the structure of excitations above the extinction
energy D0, where no dispersive QPI is detected. We find that these
Z(q, E) have only two non-dispersive q vectors, namely q1* and q5*,
which evolve with p as shown implicitly in Fig. 3a (and in detail in
Supplementary Fig. 6). Asmight be expected from their lack of energy
dispersion, it is in r-space that these excitations appear most well
defined. Analysis of Z(r, E) for D0,E, 150meV shows spatial pat-
terns that are highly similar at all energies but have spatial variations in
intensity. Representative examples are shown in Fig. 4a, b. The pat-
terns are short-correlation-length Cu–O–Cu bond-centred modula-
tions in Z(r,E) with nanoscale unidirectional domains ,4a0 wide
embedded in a glassy matrix. The spatial structure in these r-space
patterns (Fig. 4a, b) appears closely related to that detected bymaps of:

R(r,E~eV ):
I(r,zV )

I(r,{V )

These quantify variations in the energy-integrated tunnelling asym-
metry, as described in ref. 20 for V5 150meV; their spatial arrange-
ment forms a Cu–O–Cu bond-centred electronic pattern with
dispersed ,4a0-wide unidirectional nano-domains. However,
because these maps integrate over energy, they do not reveal the char-
acteristic energy of the constituent r-space phenomena.

To address this issue, we focus on the maximum intensity of
Z(r, E) for each E. This fluctuates strongly in space as shown, for
example, in Fig. 4a, b. However, simultaneous images of the pseu-
dogap energy scaleD1(r) (as defined in the inset to Fig. 4d) also show
strong spatial fluctuations (Fig. 4c). Comparing these with Fig. 4a, b,
it seems that Z(r, E) exhibits its maximum intensity in the spatial
regions where E5D1(r). To quantify this, we scale the energy E at
each r by the pseudogap magnitude D1(r) at the same location, thus
defining the new energy scale e(r)5 E/D1(r) to be a fraction of the
local pseudogap energy scale. We find that the translational- and C4-
symmetry-breaking bond-centred modulations exhibit an apparent
maximum intensity at e5 1, or E(r)5D1(r) (Supplementary
Information, section VII, and Supplementary Fig. 7). Our conclusion
is then that the intricate r-space patterning of electronic structure
seen in the maps of R (ref. 20 and Fig. 4f) is actually an atomic-scale
visualization of the spatial structure of low-p pseudogap excitations
(Figs 4e and 5a and Supplementary Fig. 7).

Summary and discussion

As p is reduced towards the Mott insulator state, scattering interfer-
ence modulations of BQPs always disappear at an energy D0 that is
indistinguishable from the energy at which electronic homogeneity is
lost26. BQP interference disappears near the perimeter of a region in
k-space restricted by the lines joining k5 (0,6p/a0) and k5 (6p/
a0, 0). For energies E.D0, the electronic structure appears to be
static in r-space and independent of E. In fact, it consists of the
atomic-scale spatial patterns previously reported20 but here identified
as the pseudogap excitations at E56D1. Our observations therefore
provide a new and different context within which to understand the
two excitation energy scales as pR 0. The lower energy, D0, is assoc-
iated with the disappearance of the BQP interference arising from the

presence of delocalized Cooper pairs, whereas the upper energy,D1, is
associated with the characteristic r-space electronic structure of the
pseudogap excitations. Overall, a progressive conversion from the
former to the latter electronic structure occurs as p decreases to zero
even though their characteristic energies DQPI and D1 remain equal.
Perhaps most notably, the low-p pseudogap excitations locally break
the translational symmetry, and reduce the C4 symmetry of the elec-
tronic structure in each four-Cu-atom plaquette to C2 symmetry in
Cu–O–Cu bond-centred patterns without long-range order20.
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Figure 4 | Imaging copper oxide pseudogap excitations as pR0.
a, b, Atomically resolved Z(r, E) for the Tc5 45K sample (simultaneous
topographic image shown in d) for two distinct energies (60, 120mV). The
intensity of electronic structure patterns in r-space vary as a function of
energy. c, The corresponding spatial map of the D1 gap magnitude over the
sample surface in d. There is a wide distribution of heterogeneous pseudogap
values26. d, A topograph showing the locations of Bi atoms (small, bright
circles) on the field of view where all data in this figure were acquired. The
inset shows the local definition of D1(r) with the tunnelling conductances at
E56D1 represented by g1 and g2, respectively. e, Image of
Z(r, e5 E/D15 1) in which energy has been rescaled by the local value of
D1(r) from c; this represents an image of what pseudogap states would look
like in terms of Z(r, E5D1) if the nanoscale disorder in D1 were not to exist.
f, The R(r, E5 150mV) patterns are virtually identical to those in e. Thus,
the spatial patterning reported in ref. 20 is actually concentrated on the
states at E56D1, meaning that these r-space excited states are the copper
oxide pseudogap excitations as pR 0.

ARTICLES NATURE |Vol 454 |28 August 2008

1076
 ©2008 Macmillan Publishers Limited. All rights reserved

Kohsaka et al, Nature 2008.

Stripe Glass seen by 
Scanning tunneling Spectroscopy

direct test of such ideas has not been possible
because neither the real-space electronic struc-
ture of the ECG state, nor that of an individual
“cluster,” could be determined directly as no
suitable imaging techniques existed.

Design of TA studies in Ca1.88Na0.12CuO2Cl2
and Bi2Sr2Dy0.2Ca0.8Cu2O8+d. STM-based im-
aging might appear an appropriate tool to ad-
dress such issues. But dI/dV imaging is fraught

with problems in lightly doped cuprates. For
example, a standard dI/dV image, although well
defined, is not a direct image of the LDOS (see
supporting online text 1). Moreover, there are
theoretical concerns that, in Ca2-xNaxCuO2Cl2,
the topmost CuO2 plane may be in an “extraor-
dinary” state (34) or that interference between
two tunneling trajectories through the 3pz-Cl
orbitals adjacent to a dopant Na+ ion may cause

rotational symmetry breaking in the tunneling
patterns (35).

The new proposals (4, 5) for tunneling
asymmetry measurements provide a notable
solution to problems with standard dI/dV
imaging because Eqs. 2 and 3 have a crucial
practical advantage. If we define the ratios
Zðr→, V Þ and Rðr→, V Þ in terms of the tunneling
current

Zðr→,V Þ ≡
dI
dV ðr

→, z, þV Þ
dI
dV ðr

→, z,−V Þ
ð4aÞ

Rðr→, V Þ ≡ Iðr→, z, þV Þ
Iðr→, z, −V Þ ð4bÞ

we see immediately from Eq. 1 that the un-
known effects in f ðr→, zÞ are all canceled out
by the division process. Thus, Zðr→, V Þ and
Rðr→, V Þ not only contain important physical
information (4, 5) but, unlike Nðr→, EÞ, are also
expressible in terms of measurable quantities
only. We have confirmed that the unknown
factors f ðr→, zÞ are indeed canceled out in Eq. 4
(see supporting online text and figures 2).

To address the material-specific theoret-
ical concerns (34, 35), we have designed a
sequence of identical TA-imaging exper-
iments in two radically different cuprates:
strongly underdoped Ca1.88Na0.12CuO2Cl2
(Na-CCOC; critical temperature Tc ~ 21 K)
and Bi2Sr2Dy0.2Ca0.8Cu2O8+d (Dy-Bi2212; Tc ~
45 K). As indicated schematically in Fig. 2, B
and C, they have completely different crystal-
lographic structure, chemical constituents, and
dopant species and sites in the termination
layers lying between the CuO2 plane and the
STM tip. Na-CCOC has a single CuO2 layer

Fig. 4. (A and D) R maps of Na-CCOC and Dy-Bi2212, respectively (taken at 150 mV from areas in
the blue boxes of Fig. 3, C and D). The fields of view are (A) 5.0 nm by 5.3 nm and (B) 5.0 nm by
5.0 nm. The blue boxes in (A) and (D) indicate areas of Fig. 4, B and C, and Fig. 4, E and F,
respectively. (B and E) Higher-resolution R map within equivalent domains from Na-CCOC and Dy-
Bi2212, respectively (blue boxes of Fig. 4, A and D). The locations of the Cu atoms are shown as
black crosses. (C and F) Constant-current topographic images simultaneously taken with Fig. 4, B
and E, respectively. Imaging conditions are (C) 50 pA at 600 mV and (F) 50 pA at 150 mV. The
markers show atomic locations, used also in Fig. 4, B and E. The fields of view of these images are
shown in Fig. 3, A and B, as orange boxes.

Fig. 5. (A) Locations relative to
the O and Cu orbitals in the CuO2
plane where each dI/dV spectrum
at the surfaces of Fig. 4, C and F,
and shown in Fig. 5B, is mea-
sured. Spectra are measured
along equivalent lines labeled
1, 2, 3, and 4 in both domains
of Fig. 4, B and E, and Fig. 5A.
(B) Differential tunneling con-
ductance spectra taken along
parallel lines through equiv-
alent domains in Na-CCOC and
Dy-Bi2212. All spectra were
taken under identical junction conditions (200 pA, 200 mV). Numbers (1 to 4)
correspond to trajectories where these sequences of spectra were taken.
Locations of the trajectories, relative to the domains, are shown between
Fig. 4B (C) and 4E (F) by arrows.
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Charge order correlated with the pseudogap

near the Fermi level is relevant to the low-energy properties of our
system, such as its transport properties, we focus our attention on the
modulations at Q*.
We find further distinction between the fluctuating-order-induced

feature at Q* and the impurity-induced features at other wavevectors,
which allowsus to establish separate connections to different regions of
the copper oxide phase diagram when we study their temperature
dependences. As seen in Fig. 1, the features at the BdG-QPI wavevec-
tors (q2–q4, q6 andq7) are strongly suppressed aboveTc, whereas that at
Q* remains robust at all temperatures below T*. By examining con-
ductance maps over the entire phase diagram, we have measured the
power spectral density of the feature at Q* at 10meV (Supplemen-
tary Information, section D) over a wide range of temperatures and
dopings. Figure 3a shows that the onset of the feature at Q* coincides
with the onset of pseudogap behaviour, at T*, the value of which has
been determined for our samples by temperature-dependent spectro-
scopic measurements of pseudogap disappearance29. In strong
contrast, the intensity (power spectral density) of superconducting
BdG-QPI modulations across the phase diagram, such as that at q7
(Fig. 3b), is strongly suppressed when the superconducting phase
coherence in the sample is lost, above Tc. This behaviour is consis-
tent with recent theoretical modelling of BdG-QPI as a function of
temperature30.
In contrast to the pseudogap, we find that the intensity of the feature

at Q* has a non-monotonic doping dependence (Fig. 3a). Plotting the
intensity of this feature in DFTs at an intermediate temperature as a
function of doping (Fig. 3c), we find a remarkable peak when the
nominal hole concentration of the sample is close to 1/8. In contrast,
the intensity of the feature at the BdG-QPI wavevector q7 seems to
peak near optimal doping. The hole concentration of 1/8 corresponds
to the ideal doping for formation of half-filled stripes, as has been well
established by neutron scattering experiments on La-based com-
pounds2 and in model calculations of copper oxide properties1,4,5,8.
The distinctive doping dependence shown in Fig. 3c suggests that
Fermi surface nesting near the anti-node cannot be responsible for
the robust feature at Q* but rather identifies fluctuating half-filled
stripes as the origin of these modulations. Moreover, because the
Bi2Sr2CaCu2O81x system does not undergo a structural distortion
near 1/8 doping, we conclude that local Mott and antiferromagnetic
correlations, as opposed to structural distortion as in the La-based
systems, are stabilizing fluctuating stripe patterns near this hole con-
centration. Nevertheless, distinguishing whether the observed patterns
are strictly one-dimensional (fluctuating stripes) or two-dimensional
(chequerboards) is complicated by the presence of doping inhomo-
geneities that locally pin these modulations31.
The connection between the appearance of the incipient fluctuating

stripe order andT* is further corroborated bymeasurements of the local
disappearance of modulations at Q*. In Fig. 4, we contrast real-space
STM conductance maps with spatial maps of the pseudogap energy
measured at the same atomic location at a temperature above Tc near
optimal doping. At this temperature and above, consistent with our
previous studies, we find regions of the sample in which the pseudogap
has collapsed29. Such spatially inhomogeneous suppression of the
pseudogap is strongly correlated with the disappearance of the feature
at Q*. This behaviour is evident when comparing the conductance
map in Fig. 4a with the pseudogap map in Fig. 4b. The regions that
showmodulations also show the strongest pseudogap. This can also be
seen in Fig. 4c, where we plot a local measure of the modulation
strength related to smoothed and normalized products of the data
and sinusoidal functions, a real-space intensitymap of the modulation
at Q* (Supplementary Information, section E). We see that regions
where the pseudogap is enhanced nucleatemodulations at Q*at higher
temperatures.
Examining the strength of incipient fluctuating stripe order and

pseudogap phenomena as a function of doping points to disparate beha-
viour between these two important phenomena and provides important

clues to how they are related. As shown in Fig. 3c, below 1/8 doping the
strengthof fluctuating stripes is diminished. Furthermore, by examining
the local correlation between themodulations at Q* and the pseudogap,
we find that the cross-correlation between these two phenomena
switches sign from positive to negative near the nominal doping of
1/8 (Fig. 4d). Approaching the Mott insulating state by lowering the
doping results in a stronger pseudogap, whereas propensity to stripe
formation is suppressed. Considering these facts together, we conclude
that the pseudogap is not caused by stripe correlations, but rather that
the pseudogap is required to nucleate fluctuating stripes. Given that
stripe formation is believed to occur through phase separation ofmobile
holes and antiferromagnetically correlated regions, it seems logical that
the pseudogap is associated with local spin correlations that make the
formation of such spatial patterns possible.
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Competition or cooperation, are stripes 
good or bad for superconductivity?

In LBCO at x=1/8, static stripes and sc coexist. 
Evidence for 2D superconductivity at high temperature.

Original high-Tc compound

Valla et al Science 2006 

Maximal pseudogap at x=1/8 where 
stripe order is most prominent.

Li et al PRL 2007,  Figure: Berg et al PRL  2007

Dynamical Layer Decoupling in a Stripe-Ordered High-Tc Superconductor

E. Berg,1 E. Fradkin,2 E.-A. Kim,1 S. A. Kivelson,1 V. Oganesyan,3 J. M. Tranquada,4 and S. C. Zhang1
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In the stripe-ordered state of a strongly correlated two-dimensional electronic system, under a set of
special circumstances, the superconducting condensate, like the magnetic order, can occur at a nonzero
wave vector corresponding to a spatial period double that of the charge order. In this case, the Josephson
coupling between near neighbor planes, especially in a crystal with the special structure of
La2!xBaxCuO4, vanishes identically. We propose that this is the underlying cause of the dynamical
decoupling of the layers recently observed in transport measurements at x " 1=8.

DOI: 10.1103/PhysRevLett.99.127003 PACS numbers: 74.72.Dn, 74.20.De, 74.25.Fy, 74.25.Ha

High-temperature superconductivity (HTSC) was first
discovered [1] in La2!xBaxCuO4. A sharp anomaly [2] in
Tc#x$ occurs at x " 1=8 which is now known to be indica-
tive [3,4] of the existence of stripe order and of its strong
interplay with HTSC. Recently, a remarkable dynamical
layer decoupling has been observed [5] associated with the
superconducting (SC) fluctuations below the spin-stripe
ordering transition temperature, Tspin " 42 K.

While Tc#x$, as determined by the onset of a bulk
Meissner effect, reaches values up to Tc#x " 0:1$ "
33 K for x somewhat smaller and larger than x " 1=8,
Tc#x$ drops to the range 2–4 K for x " 1=8. However,
in other respects, superconductivity appears to be opti-
mized for x " 1=8. The d-wave gap determined by
ARPES has recently been shown [6] to be largest for x "
1=8. Moreover, strong SC fluctuations produce an order
of magnitude drop [5] in the in-plane resistivity, !ab, at
T % Tspin, which is considerably higher than the highest
bulk SC.

The fluctuation conductivity reveals heretofore unprece-
dented characteristics (as described schematically in
Fig. 1): (1) !ab drops rapidly with decreasing temperature
from Tspin down to TKT % 16 K, at which point it becomes
immeasurably small. In the range Tspin > T > TKT, the
temperature dependence of !ab is qualitatively of the
Kosterlitz-Thouless form, as if the SC fluctuations were
strictly confined to a single copper-oxide plane. (2) By
contrast, the resistivity perpendicular to the copper-oxide
planes, !c, increases with decreasing temperatures from
T& * 300 K, down to T&& % 35 K. For T < T??, !c de-
creases with decreasing temperature, but it only becomes
vanishingly small below T3D % 10 K. Within experimental
error, for TKT > T > T3D, the resistivity ratio, !c=!ab, is
infinite. (3) The full set of usual characteristics of the SC
state, the Meissner effect and perfect conductivity, !ab "
!c " 0, is only observed below Tc " 4 K. Thus, for T3D >
T > Tc, a peculiar form of fragile 3D superconductivity
exists.

The above listed results are new, so an extrinsic expla-
nation of some aspects of the data is possible. Here, we
assume that the measured properties do reflect the bulk
behavior of La2!xBaxCuO4. We show that there is a
straightforward way in which stripe order can lead to an
enormous dynamical suppression of interplane Josephson
coupling, particularly in the charge ordered low-
temperature tetragonal (LTT) phase of La15=8Ba1=8CuO4,
i.e., T ' Tco " 54 K.

The LTT structure has two planes per unit cell. In alter-
nating planes, the charge stripes run along the x or y axes,
as shown in Fig. 2. Moreover, the parallel stripes in second
neighbor planes are thought to be shifted over by half a
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FIG. 1. Summary of the thermal phase transitions and trans-
port regimes in x " 1=8 doped La2!xBaxCuO4.
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period (so as to minimize the Coulomb interactions [7])
resulting in a further doubling of the number of planes per
unit cell, as seen in x-ray scattering studies. Below Tspin,
the spins lying between each charge stripe have antiferro-
magnetic (AFM) order along the stripe direction, which
suffers a ! phase shift across each charge stripe, resulting
in a doubling of the unit cell within the plane, see Fig. 3(c).
Hence, the Bragg scattering from the charge order in a
given plane occurs at !2!=a"h#1=4; 0i while the spin-
ordering occurs at !2!=a"h1=2# 1=8; 1=2i.

SC order should occur most strongly within the charge
stripes. Since it is strongly associated with zero center-of-
mass momentum pairing, one usually expects, and typi-
cally finds in models, that the SC order on neighboring
stripes has the same phase. However, as we will discuss,
under special circumstances, the SC order, like the AFM
order, may suffer a ! phase shift between neighboring
stripes if the effective Josephson coupling between stripes
is negative. Within a plane, so long as the stripe order is
defect free, the fact that the SC order occurs with k $
!2!=a"h#1=8; 0i has only limited observable consequen-
ces. However, antiphase SC order within a plane results in
an exact cancellation of the effective Josephson coupling
between first, second, and third neighbor planes. This
observation can explain an enormous reduction of the
interplane SC correlations in a stripe-ordered phase.

Before proceeding, we remark that there is a preexisting
observation, concerning the spin order, which supports the
idea that interplane decoupling is a bulk feature of a stripe-
ordered phase. Specifically, although the in-plane spin
correlation length measured in neutron-scattering studies
in particularly well prepared crystals of La2%xBaxCuO4 is
"spin & 40a [8], there are essentially no detectable mag-
netic correlations between neighboring planes. In typical
circumstances, 3D ordering would be expected to onset
when !"spin=a"2J1 ' T, where J1 is the strength of the
interplane exchange coupling. However, the same geomet-
ric frustration of the interplane couplings that we have
discussed in the context of the SC order pertains to the
magnetic case as well. Thus, we propose that the same
dynamical decoupling of the planes is the origin of both the
extreme 2D character of the AFM and SC ordering.

We begin with a caricature of a stripe-ordered state,
consisting of alternating Hubbard or t% J ladders which
are weakly coupled to each other (Fig. 3). Such a carica-
ture, which has been adopted in previous studies of super-
conductivity in stripe-ordered systems [9–11], certainly
overstates the extent to which stripe order produces
quasi-1D electronic structure. However, we can learn
something about the possible electronic phases and their
microscopic origins, in the sense of adiabatic continuity, by
analyzing the problem in this extreme limit. As shown in
the figure, distinct patterns of period 4 stripes can be
classified by their pattern of point group symmetry break-
ing as being ‘‘bond centered’’ or ‘‘site-centered.’’
Numerical studies of t% J ladders [12] suggest that the
difference in energy between bond- and site-centered
stripes is small, so the balance could easily be tipped one
way or another by material specific details, such as the
specifics of the electron-lattice coupling.

The simplest caricature of bond centered stripes is an
array of weakly coupled two-leg ladders with alternately
larger and smaller doping, as illustrated in Fig. 3(a). This
problem was studied in Ref. [10]. Because a strongly
interacting electron fluid on a two-leg ladder readily devel-
ops a spin-gap [13], i.e., forms a LE liquid, this structure
can exhibit strong SC tendencies to high temperatures.
Weak electron hopping between neighboring ladders pro-
duces Josephson coupling which can lead to a ‘‘d-wave
like’’ SC state [14]. However, the spin-gap precludes any
form of magnetic ordering, even when the ladders are
weakly coupled, and there is nothing about the SC order
that would prevent phase locking between neighboring
planes in a 3D material. For both these reasons, this is
not an attractive model for the stripe-ordered state in
La15=8Ba1=8CuO4. (There is, however, evidence from

FIG. 2 (color online). Stacking of stripe planes.

FIG. 3. (a) Pattern of a period 4 bond centered and (b) site-
centered stripe, with nearly undoped (solid lines) and more
heavily doped (hatched lines) regions. (c) Sketch of the pair-
field (lines) and spin (arrows) order in a period 4 site-centered
stripe in which both the SC and AFM order have period 8 due to
an assumed ! phase shift across the intervening regions. Solid
(checked) lines denote a positive (negative) pair-field.
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Stripes in pnictides?

of this surface in which the individual atoms on
the reconstruction rows can be seen (red arrows).
This 1 × 2 reconstruction is not a bulk property
(27, 29, 31) but rather a surface condition whose
effects must be avoided in SI-STM studies of the
FeAs-plane electronic structure. In our studies,
the orientation of the orthorhombic a and b axes
can be determined from the topography (figs. S1
and S2).

Detailed examination of high-quality topographs
of these surfaces reveals the first surprising
fact. Figure 1B is typical; it appears to show faint
unidirectional structures aligned along the a axis
(orange arrows). Figure 2A shows that, when two
identical atomically registered topographs mea-
sured at T50 meV are subtracted (to cancel the

signals of the surface reconstruction and topo-
graphic disorder that are independent of the sign of
the tunnel bias), unidirectional nanostructures
aligned along the a axis are seen. Because
topographs represent a logarithmic measure of the
integrated density of states, these data indicate the
existence of some form of static electronic
nanostructure. To get a clearer picture of any such
electronic nanostructures, we image the energy-
resolved LDOSðr→ ,EÞ in the same FOV (fig. S3).
Remarkably, electronic nanostructures aligned
with the a axis and spatially equivalent to those
in Fig. 2A are detected in all low-energy
LDOSðr→ ,EÞ images (fig. S3). To determine if
these phenomena indicate static or dispersive
states, one must integrate the LDOSðr→ ,EÞ over

energy. Thus, we image directly the net tunnel
current I because

Iðr→ ,EÞ ¼
Z E

0
gðr→ ,E0ÞdE0 ð1Þ

Figure 2B is an image of Iðr→ ,E ¼ 50 meVÞ;
it reveals the same electronic nanostructures and
thereby demonstrates that they must be static
over this energy range.Moreover, autocorrelation
analysis of such images (Fig. 2, A and B, insets)
shows that the static structures throughout the
image are all aligned with the a axis and are self-
similar with a characteristic dimension of eight
inter–iron-atom distances, ~8aFe-Fe. The spatially
averaged density-of-states DOS(E ) spectrum
(Fig. 2C, inset) consists of a metallic density-of-

Fig. 1. (A) Schematic phase dia-
gram of AE(Fe1-xCox)2As2 (here AE =
Ca, Sr, or Ba) as function of doping
concentration (x) (6, 13, 32, 33).
Red, blue, and green curves show
the transition temperature for struc-
ture (TS), antiferromagnetism (TAF),
and superconductivity (TC), respec-
tively. The red arrows indicate the
spin orientation for each Fe atom in
the antiferromagnetic-orthorhombic
phase. (Upper right) FeAs layer
showing the unit cell in tetragonal
(blue dashed lines) and ortho-
rhombic (black dashed lines) phases.
The orientation and periodicity of the
surface reconstruction in the topo-
graphic images in (B) is indicated by
gray lines. (B) Constant-current topo-
graphic image of Ca(Fe1–xCox)2As2
taken atV0 =–50mVand Iz = 10 pA
on a 71.0-nm square FOV. (Inset) A high-resolution topograph in a smaller FOV (4.2-nm square) taken atV0 = –5 mV and Iz = 100 pA. The red and blue arrows
indicate the atoms of 1 × 2 configuration. The orange arrows indicate the first indications of unidirectional a axis–oriented electronic nanostructures.
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Fig. 2. (A) Difference between two atomically registered topographs z(+50
mV) – z(–50 mV) (where z is the tip-sample distance), acquired in the same
61.3-nm square FOV at Iz = 10 pA. (Inset) Autocorrelation analysis of this
image; the centers of self-similarity peaks (red dotted lines) are separated by
~8aFe-Fe. (B) The current map Iðr→,E = +50 meVÞ in the same FOV as (A).
(Inset) Autocorrelation analysis of this image; the centers of self-similarity
peaks (red dotted lines) are separated by ~8aFe-Fe. (C) The current map

Iðr→,E = +50 meVÞ in the same FOV as in (A) and (B). The atomic-scale
impurity state locations as determined from conductancemapping at 150meV
are shown as 262 yellow dots. If they represent the Co dopant atoms, they
exhibit only ~15% of the density expected in the top FeAs layer, based on
the average measured Co density of the whole sample. (Inset) A typical
conductance spectrum exhibits a mixed metallic and “pseudogap-like”
shape.
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(27, 29, 31) but rather a surface condition whose
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the orientation of the orthorhombic a and b axes
can be determined from the topography (figs. S1
and S2).
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Z E

0
gðr→ ,E0ÞdE0 ð1Þ
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(Fig. 2C, inset) consists of a metallic density-of-
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Iðr→,E = +50 meVÞ in the same FOV as in (A) and (B). The atomic-scale
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are shown as 262 yellow dots. If they represent the Co dopant atoms, they
exhibit only ~15% of the density expected in the top FeAs layer, based on
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Ca(Fe1-xCox)2As2

New (2008) Iron based high-Tc superconductors 

Chuang et al, Science 2010

Static charge order with direction tied to 
orthorombic distortion  

Concepts in High Temperature Superconductivity 131

positions k± = Q ± 2πê/λ where ê is the unit vector perpendicular to the
stripe direction, λ is the stripe period, and Q is an appropriate fiduciary
point. For charge stripes, Q is any reciprocal lattice vector of the underlying
crystal, while for spin stripes, Q is offset from this by the Néel ordering vec-
tor, < π, π >. Where both spin and charge order are present, the fact that
the charge stripes are associated with magnetic antiphase domain walls is
reflected in the fact that λspin = 2λcharge, or equivalently kcharge = 2kspin.

La1.6−xNd0.4SrxCuO4 (LNSCO) is stripe ordered, and the onset of stripe LNSCO
ordering with temperature is clear. Fig. 47 shows data from neutron scat-
tering, NQR, and susceptibility measurements [413]. In this material, charge
stripes form at a higher temperature than spin stripes. Note also that static
charge and spin stripes coexist with superconductivity throughout the super-
conducting dome. In fact experiments reveal quartets of new Bragg peaks, at
Q±2πx̂/λ and Q±2πŷ/λ. In this material, the reason for this is understood
to be a bilayer effect—there is a crystallographically imposed tendency for
the stripes on neighboring planes to be oriented at right angles to each other,
giving rise to two equivalent pairs of peaks. Charge and spin peaks have also LBCO
been detected [443] in neutron scattering studies of La1.875Ba0.125−xSrxCuO4.

Fig. 47. Blue data points refer to the onset of charge inhomogeneity. Red data
points denote the onset of incommensurate magnetic peaks. Green data points are
the superconducting Tc. From Ichikawa et al. [413]

Spin stripe order has also been observed from elastic neutron scatter-
ing in La2−xSrxCuO4 (LSCO) for dopings between x = .02 and x = .05 LSCO
where the material is not superconducting at any T ; these stripes are called

Tetragonal to orthorhombic transition 
is common to the two types of high-Tc 

superconductor
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Paring on balls instead of stripes in A3C60?
LETTERS

a b c

Figure 1 Candidate crystal structures for Cs3C60. a, b.c.o. unit cell with partial (75%) occupancy of the indicated cation sites (space group Immm). b, A15 unit cell (space
group Pm3̄n) based on b.c.c. anion packing. c, f.c.c. unit cell (space group Fm3̄m). It is important to note that in a and b one unique orientation of the C3�60 anions is present,
whereas in c two orientations related by 90⇥ rotation about [100] occur in a disordered manner. In the representation of c here, only one of these orientations is shown for
clarity. The Cs+ ions are shown as red and blue spheres to signify symmetry-inequivalent positions in the unit cell. In c the red and blue spheres correspond to octahedral
and tetrahedral sites respectively, whereas in a the two sites differ in the anion faces presented to the cations. In b, one of two possible sets of cation sites is shown. The
lower densities of the body-centred packings in a and b offer more spacious sites (with four fulleride neighbours) for the large Cs+ cation.

As A15 Cs3C60 is the overwhelmingly dominant crystalline
phase, it is logical to attribute the bulk high-Tc response to
this C3�

60 compound, but to be certain we modified the synthetic
procedure to generate a sample in which the large-lattice-constant
f.c.c. phase was predominant over the A15 phase. f.c.c. Cs3C60 has
not been accessible before in the CsxC60 phase field. Reaction of
reducing agent Cs6C60 (rather than Cs) and C60 in methylamine
followed by solvent removal under dynamic vacuum and heating
at 100 ⇥C (see Supplementary Information, Scheme S2) yields
an analysed composition Cs3.4(1)C60, where di�raction reveals
42.0(1)% of a 14.7930(2) Å f.c.c. Cs3C60 phase together with
29.0(2)% A15 and 29.0(2)% b.c.o. phases. This second sample
also exhibits a pressure-induced reversible phase transition to
superconductivity, but with a reduced superconducting shielding
fraction (34%). Comparison of the magnetization data at 11.6 kbar
(see Supplementary Information, Fig. S1) shows a much greater
diamagnetic signal at the 37 K transition in the A15-dominated
sample, demonstrating unambiguously that the onset Tc observed
is due to the A15 Cs3C60 phase.

The solvent used to access the initial precursors is key to
determining the outcome of the subsequent thermal protocols to
crystallize the cubic Cs3C60 polymorphs. This is demonstrated by
control reactions in which the synthesis of the precursors was
repeated with ammonia rather than methylamine as solvent. This
yields poorly crystalline materials with pronounced amorphous
components—the crystalline components were dominated by the
b.c.o. phase with a trace of A15 and no indication of the f.c.c. phase,
and there is no significant change on heating. Once formed through
the methylamine solvent route, both the A15 and f.c.c. phases are
kinetically stable and do not transform into the Cs1C60 and Cs4C60

phases. This is the first observation of the f.c.c. Cs3C60 phase, which
has the largest interanion separation (10.46 Å) and volume per C3�

60

anion, V (809.3 Å
3
), in the A3C60 family, although its electronic

properties are not yet clear owing to the obscuring e�ect of the
high-Tc A15 phase in the present samples.

Superconductivity is only observed under applied pressure
and therefore the phase assemblage evolution with pressure
is critical to understanding its origin. We first analysed the
high-resolution synchrotron X-ray di�raction data at ambient
pressure (at room temperature and 10 K) to identify the structural
features of the superconducting phase. The A15 structure has two
possible inequivalent cation locations, each surrounded by four

nearest-neighbour fulleride anions but distinguished by whether
Cs+–C60 closest contacts are to pentagons (Cs+ residing in the
6c (1/2 1/4 0) sites of the Pm3̄n space group; coordination
number 20) or hexagons (Cs+ in 6d (1/4 1/2 0); coordination
number 24) on the neighbouring C3�

60 . Rietveld refinement clearly
shows (Fig. 3, Supplementary Information, Table S2) that the larger
hexagon-coordinated 6d sites are fully occupied by Cs+ and the
6c sites are empty (as shown in Fig. 1b). This more expanded of
the two available coordination environments, similar to that of the
tetrahedral interstices of f.c.c. A3C60, is favoured by the size of Cs+

(mean Cs. . .C distance=3.66 Å at 295 K). However, the A15 Cs3C60

structure supports distinctly di�erent C3�
60 –C3�

60 near-neighbour
interactions (hexagon–hexagon facing with mean C. . .C interanion
contacts of 3.80 Å) from those in f.c.c. A3C60 (interanion contacts
of 3.18 Å through neighbouring hexagon:pentagon C–C bonds in
K3C60) (ref. 15). Synchrotron X-ray powder di�raction at ambient
temperature with a diamond anvil cell reveals no pressure-induced
structural changes in the pressure range 0.001–20.4 kbar (see
Supplementary Information, Fig. S2). The Cs+ ions remain
sterically uncrowded in the tetrahedral holes with a mean Cs . . .C
distance of 3.46 Å at 20.4 kbar, whereas the mean near-neighbour
C . . .C contacts approach 3.47 Å. Importantly, there is also no
change in the fractions of the three coexisting phases and
refinement shows that the A15 phase remains dominant to the
highest pressure. The extracted compressibility � (⇤ �dlnV/dP)
of A15 Cs3C60 is 0.054(3) GPa�1 (Fig. 2c), whereas that of
f.c.c. Cs3C60 is 0.059(4) GPa�1 (see Supplementary Information,
Fig. S3). The phase assemblage at ambient and high pressure
reinforces the conclusion that the A15 cubic Cs3C60 phase is a
38 K superconductor.

The maximum superconductivity onset of 38 K at ⌅7 kbar
in A15 Cs3C60 is the highest Tc observed in a bulk molecular
material. Tc of A15 Cs3C60 is consistent with the monotonic Tc(V )
increase found in smaller-V f.c.c. fullerides (Fig. 4—V is the
volume per C3�

60 anion), as the b.c.c.-based packing gives a lower
anion density than all previous superconducting A3C60 phases.
If the electrons remained delocalized, the resulting reduction of
inter C60 overlap would produce a narrower t1u band and a higher
density of states at the Fermi level, N (Ef), giving an increased
Tc in a simple Bardeen–Cooper–Schrie�er-like model. However,
A15 Cs3C60 is not superconducting at ambient pressure, unlike the
f.c.c. A3C60 phases. The reduction of the interanion overlap thus
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Figure 3 Structural characterization of A15 Cs3C60. Final observed (circles) and
calculated (blue solid line) synchrotron X-ray (l = 0.50079 Å) powder diffraction
profile for the A15-rich sample (majority A15 phase, 77.7(6)%) at ambient
temperature. The lower solid line shows the difference profile and the tick marks
show the reflection positions of the A15 (top), f.c.c. (middle) and b.c.o. (bottom)
phases. The inset shows an expanded view of the diffraction profile at high Bragg
angles. Refined parameters and agreement indices are given in Supplementary
Information, Table S2. Complementary NMR characterization described in
Supplementary Information, Figs S5,S6 and Table S1 confirms the phase
assemblage deduced from the diffraction data.
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Figure 4 Superconducting transition temperature, Tc, as a function of volume
occupied per fulleride anion, V, at ambient temperature. The cyan rhombi, blue
triangles and brown circles correspond to f.c.c. C3�60 anion packings with Li2CsC60,
Pa3̄ symmetry and Fm3̄m symmetry, respectively. The highest Tc in the Fm3̄m
series is 33 K for Cs2RbC60 (ref. 4). The red/green squares correspond to the bulk
Tc (V ) behaviour observed in the b.c.c. anion packing of A15-structured Cs3C60. The
shaded region marks the onset of the insulator–metal transition. The inset shows the
maximum observed in Tc (V ) for A15 Cs3C60.

from it. The resulting maximum in Tc is strikingly reminiscent of
the Tc (hole density) behaviour of the high-Tc copper oxides as they
are chemically doped to cross the Mott–Hubbard insulator–metal
transition—in the present case, however, the complicating site
disorder associated with crystal-chemical substitution in the oxides
is not introduced. Both the observed Tc(V ) phenomenology and
the ability of cubic A15 Cs3C60 to cross the insulator–metal phase

boundary while the triple degeneracy of the t1u levels is retained
without any accompanying anion orientational or cation site
substitutional disorder are at present unique experimental features
among fulleride phases and place stringent constraints on theories
of superconductivity in C3�

60 fullerides. Although a fully developed
theory of C3�

60 superconductivity is currently lacking, we note
that theoretical models of C2�

60 systems in which strong electronic
correlations and Jahn–Teller electron–phonon coupling19 produce
local electron pairing show a maximum in Tc(U/W ) close to
the insulator–metal transition20. The new synthetic chemistry
that has led here to both the currently highest Tc molecular
superconductor and the supposedly non-existent f.c.c. Cs3C60 phase
is su⇥ciently flexible to open the way for the isolation of new
families of high-symmetry hyperexpanded fullerides required for
the exploration of the electronic states at previously inaccessible
intermolecular separations.

METHODS

Cs3C60 samples were prepared by reaction of Cs metal or Cs6C60 with C60 in
methylamine (rigorously dried by condensation onto potassium at �78 ⇤C and
subsequent distillation after 30 min) at �65 ⇤C using a dual-manifold high
vacuum line. The sample was then warmed to room temperature followed
by stirring for 1 h and solvent removal under vacuum. Subsequent thermal
treatments and characterization are detailed in the Supplementary Information.
Note: methylamine is volatile and flammable and should only be handled in a
well-exhausted fume hood taking all appropriate precautions.

Solid-state NMR spectra were measured using a Bruker Avance DSX 400
solid-state NMR spectrometer operating at 400.13 MHz for 1H and 100.13 MHz
for 13C. Zirconia rotors 2.5 mm in diameter were used for the measurements
and the magic-angle spinning (MAS) rate was 20.0 kHz. The samples were
loaded in a He-filled glove box. The 13C MAS NMR spectra were acquired using
13C ⇥/2 pulses of 3.4 µs with 20.0 s repetition time. The 1H MAS NMR spectra
were measured using 1H ⇥/2 pulses of 2.8 µs and repetition times of 20 s.
The 1H and 13C chemical shifts were referenced to tetramethylsilane. A Stoe
Stadi-P di�ractometer (Cu-K�1 radiation, linear position sensitive detector)
operating in Debye–Scherer geometry was used for phase analysis of samples
sealed in 0.5-mm-diameter glass capillaries. Raman spectra were recorded on
a JY LabRam-HR spectrometer operated in backscattered geometry by using
514.5 and 632.8 nm radiation and a sample area of 500µm diameter by typical
acquisition of 20⇥10 s. The calibration was carried out by referencing the
spectrometer to the 520.07 cm�1 line of silicon. Single-phase C60 and Cs6C60

samples were used as standards to ensure proper instrument calibration. C60

revealed only a weak signal at about 1,464–1,466 cm�1, when the 638.2 nm
laser was used; in the case of the 514.5 nm laser, a strong singlet peak at
1,464 cm�1 was observed. Cs6C60 has a strong signal at 1,430 cm�1 when
using both 514.5 and 633 nm lasers. The corresponding Raman shift per 1e�

transferred to C60 was about 5.66 cm�1. Synchrotron X-ray di�raction data
were collected at ambient temperature and 10 K using the high-resolution
powder di�ractometers on beamlines ID31 (0.85023 Å) and BM1 (0.50079 Å)
at the European Synchrotron Radiation Facility, Grenoble. Characterizing
data were also recorded at station 9.1 of the Daresbury Synchrotron Radiation
Source (SRS) as the synthetic conditions were being optimized. High-pressure
synchrotron X-ray di�raction experiments were carried out in a diamond anvil
cell at the Daresbury SRS at station 9.5. The powder sample was loaded in
a diamond anvil cell, which was used for high-pressure generation and was
equipped with a steel gasket. The diameter of the diamond culet was 800µm
and the sample was introduced in a hole made in the gasket 250µm deep
and 200 µm in diameter. Silicone oil loaded in the diamond anvil cell was
used as a pressure medium. Pressure was increased at room temperature and
was measured with the ruby fluorescence method. The di�raction patterns
were collected using an image plate detector (l = 0.44397 Å) up to a pressure
of 20.4 kbar. Masking of the strong Bragg reflections of the ruby chip and
integration of the two-dimensional di�raction images were carried out with the
FIT2D software. Data analysis of the di�raction profiles at both ambient and
high P was carried out with the GSAS suite of Rietveld programs.

Magnetization measurements were carried out at 20 Oe on about 15 mg
samples in the temperature range 1.8–50 K under both zero-field-cooling and
field-cooling protocols with a Quantum Design superconducting quantum
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•Non-monotonic Tc with lattice spacing (density of states).
•Metal-insulator (Mott insulator) transition. 
•Antiferromagnetic order.

A.Y. Ganin et al, Nature Materials 2008
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•Normal state antinodal pseudogap?
•Normal state Fermi arc?
•Other spectral features?

Returning to 
cuprates
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“Fermi arc”

tails, of course, depend on the doping, the parameters used,

and on the density of stripes. The latter being particularly

important in that for a short interstripe distance the stripe

states will overlap and form bands of momenta transverse to

stripes (see Fig. 14).
One might, in an effective model such as this, attempt to

fit the experimental data by taking t!!0 which would allow
for spectral weight concentrated in the nodal region. How-

ever the ARPES data for the lightly doped samples indicate

that most of the additional weight introduced with doping is,

in fact, in the antinodal region only that it is gapped away

from the Fermi surface. If we take t!!0 we would vacate
the antinodal states and we would not be able to reproduce

this qualitative feature. Related to this there is a more quan-

titative problem for a diagonal stripe as contrasted with the

ARPES data, which should be more general than our model,

namely that the bandwidth of a purely diagonal stripe

is expected to be proportional to t!. Values of t! in the
literature are less than 0.1 eV, implying a bandwidth

Wdiagonal"0.2 eV, whereas the bandwidth from the in-gap

states seen in ARPES can be estimated at Win-gap#1 eV,
which looks more consistent with the band width Wcol!2t of
bond-aligned stripes. To summarize, we find that pure diag-

onal stripes are not consistent with the ARPES data of lightly

doped LSCO.

A. Staircase stripes

Given the difficulties with matching the model using a

diagonal stripe configuration to the ARPES data it is instead

tempting to look at bond-aligned stripes. Now, we know

from neutron scattering that bond-aligned stripes are not seen

in these very lightly doped materials, but only diagonal

stripes. This led us to investigating the properties of stripes

which are locally bond-aligned but globally diagonal. A natu-

ral and most simple candidate for such a construction is a

“staircase” stripe. We can define a staircase stripe along the

x+y direction, but letting it run alternately along the x̂ and ŷ

directions with some step length l. For an ordered array of

such staircase stripes we also introduce a stripe distance d

defined according to Fig. 4. In the case of antiphase stripes,

the potential has the symmetries

V"x + l,y + l# = V"x,y# ,

V"x + d,y − d# = − V"x,y# , "10#

which also give the primitive cell as indicated in the figure.

The same symmetries hold true for the full potential of Eq.

(1) which is simply multiplied by a factor "−1#x+y to account
for the staggered field.

We will return to magnetic structure factors of such stair-

case stripes below, but it is easy to see that as long as l$d

the main magnetic diffraction peaks of such a staircase stripe

are equivalent to an array of purely diagonal stripes with the

interstripe distance 2d along the x and y direction.

We turn now to the distribution of spectral weight of stair-

case stripes. As an example we look at a system with l=8

and d=8, where d is chosen such that the magnetic structure

factor has main peaks at "%±& /$2,%'& /$2# with & /$2
=1/32, which corresponds roughly to the &%1/25 seen in
neutron scattering at 4% doping. We diagonalize this system

numerically to find the single particle eigenstates ()"k!#, with
energies E), in terms of which we calculate the single par-

ticle spectral function

A"k!,*# =&
)

'()"k!#'2&"E) − *# , "11#

where &"E)−*# is the Kronecker delta, and the local density
of states

R"r!,*# =&
)

'()"r!#'2&"E) − *# , "12#

with ()"r!#=1/LxLy&k!e
ik!·r!()"k!# being the eigenfunctions in

real space. Figure 5 shows spectral weight distribution in k

space and real space when integrated over an energy window

+*=0.2 around the Fermi energy at 4% doping, i.e., calcu-

lating

I"k!# = (
EF−+*/2

EF++*/2

A"k!,*#d* , "13#

and

R"r!# = (
EF−+*/2

EF++*/2

R"r!,*#d* . "14#

We find that the low-energy spectral weight is concentrated

near the nodal region. It is highly anisotropic with most of

FIG. 4. Graphical representation of a staircase stripe defined by

the step length l and the stripe distance d. The rectangle indicates a

primitive cell. The potential V"x ,y# is given by V=0 for darker

gray, V=1 for light gray, and V=−1 for white.

FIG. 5. (Color online) An ordered array of staircase stripes with
l=8 and d=8, using t=m=1, t!=−0.1, and t"=0. Momentum space
(a) and real space (b) spectral weight integrated over an energy
window of 0.2 around the Fermi energy at 4% hole doping. The full

system size is 256,256 while in (b) is shown a 100,100 section.

BAND STRUCTURE OF CHARGE-ORDERED DOPED… PHYSICAL REVIEW B 69, 214433 (2004)
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FIG. 1: Fermi surface and band structure of the La-Bi2201 UD18K sample (underdoped, Tc=18

K) measured at a temperature of 14 K. (a). Photoemission intensity at the Fermi energy (EF ) as

a function of kx and ky. Four Fermi surface sheets are resolved in the covered momentum space,

marked as LM for the main sheet, LP for the Fermi pocket, and LS and LPS for the others. (b-f)

show band structure (bottom panels) and corresponding momentum distribution curves (MDCs)

at the Fermi level (upper panels) along five typical momentum cuts (cuts 1 to 5) as labeled in Fig.

1a. To see the weak features more clearly, the original MDCs (thin grey lines) in the upper panel

are expanded 10 times and plotted in the same figures (thick black lines).
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Stripes in mean field

In mean field, stripes give antinodal spectral weight (“stripe bands”)
SDW/CDW order cannot explain pseudogap

2

II. MODEL

The model we consider is a tight-binding model in a
static field corresponding to unidirectional (striped) spin
density wave order and a spatially modulated BCS pair
field which is uniform along the stripe extension and that
may or may not be periodic. The size of the unit cell in
real space is 2⇥Nx, where Nx correspond to an integer
multiple of 8, the spin stripe period. We thus consider
only charge period four stripes but to reduce the num-
ber of parameters we do not include an explicit field that
couples to the charge density. The inclusion of a charge
potential of similar or smaller magnitude is not essen-
tial because it does not change the first Brillouin zone.
The charge potential will e⇥ect the various bands dif-
ferently (see Millis) which may change the Fermi surface
from containing hole pockets to electron pockets or both.
Here we will choose parameters such that there is a nodal
hole pocket, and there may or may not be antinodal (i.
e. where most of the spectral weight is) electron pockets.
This is the phenomenological input that we take from
ARPES, there should be nodal spectral weight. As we
will see our results for the single particle spectral func-
tion do not depend on whether or not there are electron
pockets.

Ht = �t
⇤

<rr�>

c†r⇥cr�⇥ � t⇥
⇤

<<rr�>>

c†r⇥cr�⇥

We will take t = 1 and use t⇥ = �0.3. To generate a
spin density wave we include the term

HSDW = m�
⇤

x,y

(�1)yV (x)nx,y,⇥

= m�
⇤

kx,ky,q

Vqc
†
kx,ky,⇥ckx�q,ky��,⇥ . (1)

Here we will only consider period 8 SDW such that V (x+
8) = V (x) and V (x+4) = �V (x). In what follows we will
present results for bond-centered stripes for which V (x
mod 8) = (m1, m1,�m2, m2,�m1,�m1, m2,�m2). (We
have also done calculations for site centered stripes with
the same periodicity and find the same qualitative re-
sults...)

HBCS,d = �d

⇤

i,y,⇥

ei⇤i

�
c†x1,i,y,⇥c†x2,i,y,�⇥ � (2)

(c†x1,i,y,⇥c†x1,i,y+1,�⇥ + c†x2,i,y,⇥c†x2,i,y+1,�⇥)
⇥

+ H.C.

HBCS,s = �s

⇤

i,y,j=1,2;⇥

(ei⇤ic†xj,i,y,⇥c†xj,i,y,�⇥) + H.C.

In the pseudogappped dos we find that the minimum
is not at ⇥ = 0. This is a direct manifestation of the fact
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Bare Fermi surface

servations of high frequency quantum oscillations of the Hall
resistivity in strong magnetic fields in YBa2Cu3Oy that seem
to imply small Fermi pockets.15–17 We show that this exact
distinction is found between a system with long-range spin-
stripe order and a system with only short-range spin-stripe
correlations. In simulations of commensurate stripe ordered
systems !Fig. 1", we find a nodal region hole pocket together
with a quasi-one dimensional Fermi surface section that are
replaced by a large Fermi surface in a disordered stripe sys-
tem !Fig. 5". It is known that a c-axis magnetic field can
enhance stripe order,1,18 thus providing a possible connection
to the observations of quantum oscillations. If the high-field
measurements indeed probe a stripe ordered state, which the
ARPES measurements generally do not, our results may thus
provide an explanation for the apparent discrepancy between
the two probes wherein the Fermi arc could be regarded as
the remnant in the disordered state of a nodal hole pocket.

In light of this, we also consider the implications of the
enlarged stripe unit cell and find that the hole density of a
hole pocket will be decreased by factors of 2 for even charge
period and 4 for odd charge period compared to an estimate
that assumes no long-range order. Based only on the stripe

periodicity, we can also set an estimated upper limit to the
size of a nodal hole pocket of 1.6% of the full Brillouin zone
for a period four stripe and 4% for a period five stripe with
larger pockets merging into open sections. From the canoni-
cal relation between doping and stripe periodicity,1 we may
expect period five for “1/10” doping and period four for
“1/8” doping. Quantum oscillations have been observed for
doping close to 1/10, whereas for 1/8 doping, the high-field
limit remains to be explored.16,19 For the period four stripes,
we expect either no oscillations, which correspond to only
open orbits, or possibly a smaller frequency of up to 450 T,
which corresponds to the maximum pocket size. If a sharp
distinction is found between 1/8 and 1/10, it would be a
dramatic confirmation of stripe order.

Although hole pockets may explain the frequency of
quantum oscillations, they cannot explain why the Hall co-
efficient !RH" may be negative at low temperature.15,16,20

This has led to suggestions of the formation of electron
pockets due to broken translational symmetry.21,22 However,
the locations of such electron pockets are in regions of the
Brillouin zone #along !0,0" to !! ,0"$ where there is no evi-
dence from photoemission of any substantial spectral weight
and they must be considered highly speculative. For a stripe
ordered system, in particular, we argue that electron pockets
arise only as an artifact of a mean-field-type description that
effectively ignores the interactions on a stripe.

Here, instead, we show that the stripe band with open
orbits may be electronlike, thus providing an alternative ex-
planation for a negative Hall coefficient. The sign of RH for
the stripe band sensitively depends on the changes in the
Fermi velocity over the Fermi surface, which depends, in
turn, on the band structure parameters as well as the charac-
ter !strength and periodicity" of the stripe order. The apparent
nonuniversality of the Hall coefficient15,16,20,23,24 in different
materials is not unexpected if stripe order plays a role.

II. MODEL

The model we consider is a tight-binding model on a
square lattice in a static potential that couples to the local
spin density and that may or may not have long-range stripe
order. We can think of the potential as a strong inhomoge-
neous magnetic field that is self-consistently generated from
an interacting model, such as the large-U Hubbard model in
the Hartree–Fock approximation.25 The Hamiltonian reads

H = − t %
&rr!'"

!cr,"
† cr!" + H.c." − t! %

&rr!'!"

!cr,"
† cr!" + H.c."

+ %
x,y,"

"!− 1"yV!x"cx,y,"
† cx,y,", !1"

where cr," is the electron destruction operator at site
r= !x ,y" and with spin "=#. We will also refer to the stripe
perpendicular !x" and stripe parallel !y" directions as x!!k!"
and x(!k(", respectively. The hopping is given in a standard
fashion, where &rr!' indicates the nearest neighbors and
&rr!'! indicates the next-nearest neighbors. We will use en-
ergy units such that t=1 and we take t!=−0.3. For the
Hubbard model with on-site interaction U%rnr↑nr↓, we would
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FIG. 1. !Color online" Low-energy spectral weights of #!a" and
!b"$ period four and !c" and !d" period five bond-centered stripe
ordered systems for stripe potential )V!x")=0.5 and doping given
below. The left column shows the spectral weight as an intensity
plot where the dashed lines are the Bragg planes of the stripe order
at !3! /4,!" and !4! /5,!". The right column shows the full Fermi
surface together with the centermost Bragg planes !dashed lines"
and the first Brillouin zone !highlighted". The size of a pocket in !b"
is 0.7% of one quadrant !0$k( $!, 0$k!$!" and the actual hole
density of the nodal pockets is also 0.7%, with a total hole doping
including the antinodal stripe states of 17.5% !EF=−1.15". The size
of a pocket in !d" is 1.2% of one quadrant, while the hole density of
the nodal pockets is only 0.6%, with a total doping of 12.5%
!EF=−1.0". The boxes show the estimated upper limit to the size of
a pocket as discussed in the text.

MATS GRANATH PHYSICAL REVIEW B 77, 165128 !2008"

165128-2

M.G. PRB 2008

Band folding due to spin density wave order

Tuesday, May 8, 12



15

2
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The model we consider is a tight-binding model in a
static field corresponding to unidirectional (striped) spin
density wave order and a spatially modulated BCS pair
field which is uniform along the stripe extension and that
may or may not be periodic. The size of the unit cell in
real space is 2⇥Nx, where Nx correspond to an integer
multiple of 8, the spin stripe period. We thus consider
only charge period four stripes but to reduce the num-
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couples to the charge density. The inclusion of a charge
potential of similar or smaller magnitude is not essen-
tial because it does not change the first Brillouin zone.
The charge potential will e⇥ect the various bands dif-
ferently (see Millis) which may change the Fermi surface
from containing hole pockets to electron pockets or both.
Here we will choose parameters such that there is a nodal
hole pocket, and there may or may not be antinodal (i.
e. where most of the spectral weight is) electron pockets.
This is the phenomenological input that we take from
ARPES, there should be nodal spectral weight. As we
will see our results for the single particle spectral func-
tion do not depend on whether or not there are electron
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the same periodicity and find the same qualitative re-
sults...)

HBCS,d = �d

⇤

i,y,⇥

ei⇤i

�
c†x1,i,y,⇥c†x2,i,y,�⇥ � (2)

(c†x1,i,y,⇥c†x1,i,y+1,�⇥ + c†x2,i,y,⇥c†x2,i,y+1,�⇥)
⇥

+ H.C.

HBCS,s = �s

⇤

i,y,j=1,2;⇥

(ei⇤ic†xj,i,y,⇥c†xj,i,y,�⇥) + H.C.

In the pseudogappped dos we find that the minimum
is not at ⇥ = 0. This is a direct manifestation of the fact

�i �i+1

FIG. 1:

Out[234]=

figures.nb   3

FIG. 2:

In[235]:= p1 = ListDensityPlotA5 µ 10^H4L Akw10@@Range@150, 250D, Range@1, 40D, 100DD,

ColorFunction Ø Hclr@ÒD &L, Mesh Ø 880, 0.1, 0.2, 0.3, 0.4<, 8-.4, -.2, 0, .2, .4<<,
PlotRange Ø All, DataRange Ø 880, .4<, 8-.5, .5<<, ColorFunctionScaling Ø False,

Epilog Ø 9Inset@Text@Style@"c1", 16DD, Scaled@8.9, .9<DD,

InsetATextAStyleA"ky", 16EE, Scaled@8.9, .1<DE,

Inset@Text@Style@"w", 16DD, Scaled@8.1, .9<DD=E; p2 = ListDensityPlot@

5 µ 10^H4L Transpose@Table@Akw10@@Range@150, 250D, i + 10, iDD, 8i, 20, 60<DD,
ColorFunction Ø Hclr@ÒD &L, Mesh Ø 88.2, 0.3, 0.4, 0.5, 0.6<, 8-.4, -.2, 0, .2, .4<<,
PlotRange Ø All, DataRange Ø 88.2, .6<, 8-.5, .5<<, ColorFunctionScaling Ø False,

Epilog Ø 8Inset@Text@Style@"c3", 16DD, Scaled@8.9, .9<DD,
Inset@Text@Style@"kx", 16DD, Scaled@8.9, .1<DD,
Inset@Text@Style@"w", 16DD, Scaled@8.1, .9<DD<D; p3 = ListDensityPlot@

5 µ 10^H4L Transpose@Table@Akw10@@Range@150, 250D, i, i + 10DD, 8i, 20, 60<DD,
ColorFunction Ø Hclr@ÒD &L, Mesh Ø 880.3, 0.4, 0.5, 0.6, 0.7<, 8-.4, -.2, 0, .2, .4<<,
PlotRange Ø All, DataRange Ø 88.3, .7<, 8-.5, .5<<, ColorFunctionScaling Ø False,

Epilog Ø 8Inset@Text@Style@"c2", 16DD, Scaled@8.9, .9<DD, Inset@Text@Style@"kx", 16DD,
Scaled@8.9, .1<DD, Inset@Text@Style@"w", 16DD, Scaled@8.1, .9<DD<D;
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II. MODEL

The model we consider is a tight-binding model in a
static field corresponding to unidirectional (striped) spin
density wave order and a spatially modulated BCS pair
field which is uniform along the stripe extension and that
may or may not be periodic. The size of the unit cell in
real space is 2⇥Nx, where Nx correspond to an integer
multiple of 8, the spin stripe period. We thus consider
only charge period four stripes but to reduce the num-
ber of parameters we do not include an explicit field that
couples to the charge density. The inclusion of a charge
potential of similar or smaller magnitude is not essen-
tial because it does not change the first Brillouin zone.
The charge potential will e⇥ect the various bands dif-
ferently (see Millis) which may change the Fermi surface
from containing hole pockets to electron pockets or both.
Here we will choose parameters such that there is a nodal
hole pocket, and there may or may not be antinodal (i.
e. where most of the spectral weight is) electron pockets.
This is the phenomenological input that we take from
ARPES, there should be nodal spectral weight. As we
will see our results for the single particle spectral func-
tion do not depend on whether or not there are electron
pockets.

Ht = �t
⇤

<rr�>

c†r⇥cr�⇥ � t⇥
⇤

<<rr�>>

c†r⇥cr�⇥

We will take t = 1 and use t⇥ = �0.3. To generate a
spin density wave we include the term

HSDW = m�
⇤

x,y

(�1)yV (x)nx,y,⇥

= m�
⇤

kx,ky,q

Vqc
†
kx,ky,⇥ckx�q,ky��,⇥ . (1)

Here we will only consider period 8 SDW such that V (x+
8) = V (x) and V (x+4) = �V (x). In what follows we will
present results for bond-centered stripes for which V (x
mod 8) = (m1, m1,�m2, m2,�m1,�m1, m2,�m2). (We
have also done calculations for site centered stripes with
the same periodicity and find the same qualitative re-
sults...)

HBCS,d = �d

⇤

i,y,⇥

ei⇤i

�
c†x1,i,y,⇥c†x2,i,y,�⇥ � (2)

(c†x1,i,y,⇥c†x1,i,y+1,�⇥ + c†x2,i,y,⇥c†x2,i,y+1,�⇥)
⇥

+ H.C.

HBCS,s = �s

⇤

i,y,j=1,2;⇥

(ei⇤ic†xj,i,y,⇥c†xj,i,y,�⇥) + H.C.

In the pseudogappped dos we find that the minimum
is not at ⇥ = 0. This is a direct manifestation of the fact
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In[235]:= p1 = ListDensityPlotA5 µ 10^H4L Akw10@@Range@150, 250D, Range@1, 40D, 100DD,
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II. MODEL

The model we consider is a tight-binding model in a
static field corresponding to unidirectional (striped) spin
density wave order and a spatially modulated BCS pair
field which is uniform along the stripe extension and that
may or may not be periodic. The size of the unit cell in
real space is 2⇥Nx, where Nx correspond to an integer
multiple of 8, the spin stripe period. We thus consider
only charge period four stripes but to reduce the num-
ber of parameters we do not include an explicit field that
couples to the charge density. The inclusion of a charge
potential of similar or smaller magnitude is not essen-
tial because it does not change the first Brillouin zone.
The charge potential will e⇥ect the various bands dif-
ferently (see Millis) which may change the Fermi surface
from containing hole pockets to electron pockets or both.
Here we will choose parameters such that there is a nodal
hole pocket, and there may or may not be antinodal (i.
e. where most of the spectral weight is) electron pockets.
This is the phenomenological input that we take from
ARPES, there should be nodal spectral weight. As we
will see our results for the single particle spectral func-
tion do not depend on whether or not there are electron
pockets.
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⇤
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We will take t = 1 and use t⇥ = �0.3. To generate a
spin density wave we include the term

HSDW = m�
⇤

x,y

(�1)yV (x)nx,y,⇥

= m�
⇤

kx,ky,q

Vqc
†
kx,ky,⇥ckx�q,ky��,⇥ . (1)

Here we will only consider period 8 SDW such that V (x+
8) = V (x) and V (x+4) = �V (x). In what follows we will
present results for bond-centered stripes for which V (x
mod 8) = (m1, m1,�m2, m2,�m1,�m1, m2,�m2). (We
have also done calculations for site centered stripes with
the same periodicity and find the same qualitative re-
sults...)

HBCS,d = �d

⇤

i,y,⇥

ei⇤i

�
c†x1,i,y,⇥c†x2,i,y,�⇥ � (2)

(c†x1,i,y,⇥c†x1,i,y+1,�⇥ + c†x2,i,y,⇥c†x2,i,y+1,�⇥)
⇥

+ H.C.

HBCS,s = �s

⇤

i,y,j=1,2;⇥

(ei⇤ic†xj,i,y,⇥c†xj,i,y,�⇥) + H.C.

In the pseudogappped dos we find that the minimum
is not at ⇥ = 0. This is a direct manifestation of the fact
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II. MODEL

The model we consider is a tight-binding model in a
static field corresponding to unidirectional (striped) spin
density wave order and a spatially modulated BCS pair
field which is uniform along the stripe extension and that
may or may not be periodic. The size of the unit cell in
real space is 2⇥Nx, where Nx correspond to an integer
multiple of 8, the spin stripe period. We thus consider
only charge period four stripes but to reduce the num-
ber of parameters we do not include an explicit field that
couples to the charge density. The inclusion of a charge
potential of similar or smaller magnitude is not essen-
tial because it does not change the first Brillouin zone.
The charge potential will e⇥ect the various bands dif-
ferently (see Millis) which may change the Fermi surface
from containing hole pockets to electron pockets or both.
Here we will choose parameters such that there is a nodal
hole pocket, and there may or may not be antinodal (i.
e. where most of the spectral weight is) electron pockets.
This is the phenomenological input that we take from
ARPES, there should be nodal spectral weight. As we
will see our results for the single particle spectral func-
tion do not depend on whether or not there are electron
pockets.
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⇤
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We will take t = 1 and use t⇥ = �0.3. To generate a
spin density wave we include the term

HSDW = m�
⇤

x,y

(�1)yV (x)nx,y,⇥

= m�
⇤

kx,ky,q

Vqc
†
kx,ky,⇥ckx�q,ky��,⇥ . (1)

Here we will only consider period 8 SDW such that V (x+
8) = V (x) and V (x+4) = �V (x). In what follows we will
present results for bond-centered stripes for which V (x
mod 8) = (m1, m1,�m2, m2,�m1,�m1, m2,�m2). (We
have also done calculations for site centered stripes with
the same periodicity and find the same qualitative re-
sults...)

HBCS,d = �d

⇤

i,y,⇥

ei⇤i

�
c†x1,i,y,⇥c†x2,i,y,�⇥ � (2)

(c†x1,i,y,⇥c†x1,i,y+1,�⇥ + c†x2,i,y,⇥c†x2,i,y+1,�⇥)
⇥

+ H.C.

HBCS,s = �s

⇤

i,y,j=1,2;⇥

(ei⇤ic†xj,i,y,⇥c†xj,i,y,�⇥) + H.C.

In the pseudogappped dos we find that the minimum
is not at ⇥ = 0. This is a direct manifestation of the fact
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On-stripe pairing gives pseudogap/nodal pocket

�s = t/3

n � 0.16 n � 0.20
A(k, � = 0)

� =0

m = t/3

�d = t/4

2

II. MODEL

The model we consider is a tight-binding model in a
static field corresponding to unidirectional (striped) spin
density wave order and a spatially modulated BCS pair
field which is uniform along the stripe extension and that
may or may not be periodic. The size of the unit cell in
real space is 2⇥Nx, where Nx correspond to an integer
multiple of 8, the spin stripe period. We thus consider
only charge period four stripes but to reduce the num-
ber of parameters we do not include an explicit field that
couples to the charge density. The inclusion of a charge
potential of similar or smaller magnitude is not essen-
tial because it does not change the first Brillouin zone.
The charge potential will e⇥ect the various bands dif-
ferently (see Millis) which may change the Fermi surface
from containing hole pockets to electron pockets or both.
Here we will choose parameters such that there is a nodal
hole pocket, and there may or may not be antinodal (i.
e. where most of the spectral weight is) electron pockets.
This is the phenomenological input that we take from
ARPES, there should be nodal spectral weight. As we
will see our results for the single particle spectral func-
tion do not depend on whether or not there are electron
pockets.

Ht = �t
⇤

<rr�>

c†r⇥cr�⇥ � t⇥
⇤

<<rr�>>

c†r⇥cr�⇥

We will take t = 1 and use t⇥ = �0.3. To generate a
spin density wave we include the term

HSDW = m�
⇤

x,y

(�1)yV (x)nx,y,⇥

= m�
⇤

kx,ky,q

Vqc
†
kx,ky,⇥ckx�q,ky��,⇥ . (1)

Here we will only consider period 8 SDW such that V (x+
8) = V (x) and V (x+4) = �V (x). In what follows we will
present results for bond-centered stripes for which V (x
mod 8) = (m1, m1,�m2, m2,�m1,�m1, m2,�m2). (We
have also done calculations for site centered stripes with
the same periodicity and find the same qualitative re-
sults...)

HBCS,d = �d

⇤

i,y,⇥

ei⇤i

�
c†x1,i,y,⇥c†x2,i,y,�⇥ � (2)

(c†x1,i,y,⇥c†x1,i,y+1,�⇥ + c†x2,i,y,⇥c†x2,i,y+1,�⇥)
⇥

+ H.C.

HBCS,s = �s

⇤

i,y,j=1,2;⇥

(ei⇤ic†xj,i,y,⇥c†xj,i,y,�⇥) + H.C.

In the pseudogappped dos we find that the minimum
is not at ⇥ = 0. This is a direct manifestation of the fact

�i �i+1
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In[235]:= p1 = ListDensityPlotA5 µ 10^H4L Akw10@@Range@150, 250D, Range@1, 40D, 100DD,

ColorFunction Ø Hclr@ÒD &L, Mesh Ø 880, 0.1, 0.2, 0.3, 0.4<, 8-.4, -.2, 0, .2, .4<<,
PlotRange Ø All, DataRange Ø 880, .4<, 8-.5, .5<<, ColorFunctionScaling Ø False,

Epilog Ø 9Inset@Text@Style@"c1", 16DD, Scaled@8.9, .9<DD,

InsetATextAStyleA"ky", 16EE, Scaled@8.9, .1<DE,

Inset@Text@Style@"w", 16DD, Scaled@8.1, .9<DD=E; p2 = ListDensityPlot@

5 µ 10^H4L Transpose@Table@Akw10@@Range@150, 250D, i + 10, iDD, 8i, 20, 60<DD,
ColorFunction Ø Hclr@ÒD &L, Mesh Ø 88.2, 0.3, 0.4, 0.5, 0.6<, 8-.4, -.2, 0, .2, .4<<,
PlotRange Ø All, DataRange Ø 88.2, .6<, 8-.5, .5<<, ColorFunctionScaling Ø False,

Epilog Ø 8Inset@Text@Style@"c3", 16DD, Scaled@8.9, .9<DD,
Inset@Text@Style@"kx", 16DD, Scaled@8.9, .1<DD,
Inset@Text@Style@"w", 16DD, Scaled@8.1, .9<DD<D; p3 = ListDensityPlot@

5 µ 10^H4L Transpose@Table@Akw10@@Range@150, 250D, i, i + 10DD, 8i, 20, 60<DD,
ColorFunction Ø Hclr@ÒD &L, Mesh Ø 880.3, 0.4, 0.5, 0.6, 0.7<, 8-.4, -.2, 0, .2, .4<<,
PlotRange Ø All, DataRange Ø 88.3, .7<, 8-.5, .5<<, ColorFunctionScaling Ø False,

Epilog Ø 8Inset@Text@Style@"c2", 16DD, Scaled@8.9, .9<DD, Inset@Text@Style@"kx", 16DD,
Scaled@8.9, .1<DD, Inset@Text@Style@"w", 16DD, Scaled@8.1, .9<DD<D;

p4 = ListDensityPlotA5 µ 10^H4L Akwstripe@@Range@150, 250D, Range@1, 40D, 100DD,

ColorFunction Ø Hclr@ÒD &L, Mesh Ø 880, 0.1, 0.2, 0.3, 0.4<, 8-.4, -.2, 0, .2, .4<<,
PlotRange Ø All, DataRange Ø 880, .4<, 8-.5, .5<<, ColorFunctionScaling Ø False,

Epilog Ø 9Inset@Text@Style@"a1", 16DD, Scaled@8.9, .9<DD,

InsetATextAStyleA"ky", 16EE, Scaled@8.9, .1<DE,

Inset@Text@Style@"w", 16DD, Scaled@8.1, .9<DD=E; p5 = ListDensityPlot@

5 µ 10^H4L Transpose@Table@Akwstripe@@Range@150, 250D, i + 10, iDD, 8i, 20, 60<DD,
ColorFunction Ø Hclr@ÒD &L, Mesh Ø 88.2, 0.3, 0.4, 0.5, 0.6<, 8-.4, -.2, 0, .2, .4<<,
PlotRange Ø All, DataRange Ø 88.2, .6<, 8-.5, .5<<, ColorFunctionScaling Ø False,

Epilog Ø 8Inset@Text@Style@"a3", 16DD, Scaled@8.9, .9<DD,
Inset@Text@Style@"kx", 16DD, Scaled@8.9, .1<DD,
Inset@Text@Style@"w", 16DD, Scaled@8.1, .9<DD<D; p6 = ListDensityPlot@

5 µ 10^H4L Transpose@Table@Akwstripe@@Range@150, 250D, i, i + 10DD, 8i, 20, 60<DD,
ColorFunction Ø Hclr@ÒD &L, Mesh Ø 880.3, 0.4, 0.5, 0.6, 0.7<, 8-.4, -.2, 0, .2, .4<<,
PlotRange Ø All, DataRange Ø 88.3, .7<, 8-.5, .5<<, ColorFunctionScaling Ø False,

Epilog Ø 8Inset@Text@Style@"a2", 16DD, Scaled@8.9, .9<DD, Inset@Text@Style@"kx", 16DD,
Scaled@8.9, .1<DD, Inset@Text@Style@"w", 16DD, Scaled@8.1, .9<DD<D;

ff = GraphicsGrid@88p4, p6, p5<, 8p1, p3, p2<<, Spacings Ø 2D
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II. MODEL

The model we consider is a tight-binding model in a
static field corresponding to unidirectional (striped) spin
density wave order and a spatially modulated BCS pair
field which is uniform along the stripe extension and that
may or may not be periodic. The size of the unit cell in
real space is 2⇥Nx, where Nx correspond to an integer
multiple of 8, the spin stripe period. We thus consider
only charge period four stripes but to reduce the num-
ber of parameters we do not include an explicit field that
couples to the charge density. The inclusion of a charge
potential of similar or smaller magnitude is not essen-
tial because it does not change the first Brillouin zone.
The charge potential will e⇥ect the various bands dif-
ferently (see Millis) which may change the Fermi surface
from containing hole pockets to electron pockets or both.
Here we will choose parameters such that there is a nodal
hole pocket, and there may or may not be antinodal (i.
e. where most of the spectral weight is) electron pockets.
This is the phenomenological input that we take from
ARPES, there should be nodal spectral weight. As we
will see our results for the single particle spectral func-
tion do not depend on whether or not there are electron
pockets.

Ht = �t
⇤

<rr�>

c†r⇥cr�⇥ � t⇥
⇤

<<rr�>>

c†r⇥cr�⇥

We will take t = 1 and use t⇥ = �0.3. To generate a
spin density wave we include the term

HSDW = m�
⇤

x,y

(�1)yV (x)nx,y,⇥

= m�
⇤

kx,ky,q

Vqc
†
kx,ky,⇥ckx�q,ky��,⇥ . (1)

Here we will only consider period 8 SDW such that V (x+
8) = V (x) and V (x+4) = �V (x). In what follows we will
present results for bond-centered stripes for which V (x
mod 8) = (m1, m1,�m2, m2,�m1,�m1, m2,�m2). (We
have also done calculations for site centered stripes with
the same periodicity and find the same qualitative re-
sults...)

HBCS,d = �d

⇤

i,y,⇥

ei⇤i

�
c†x1,i,y,⇥c†x2,i,y,�⇥ � (2)

(c†x1,i,y,⇥c†x1,i,y+1,�⇥ + c†x2,i,y,⇥c†x2,i,y+1,�⇥)
⇥

+ H.C.

HBCS,s = �s

⇤

i,y,j=1,2;⇥

(ei⇤ic†xj,i,y,⇥c†xj,i,y,�⇥) + H.C.

In the pseudogappped dos we find that the minimum
is not at ⇥ = 0. This is a direct manifestation of the fact

�i �i+1
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In[235]:= p1 = ListDensityPlotA5 µ 10^H4L Akw10@@Range@150, 250D, Range@1, 40D, 100DD,

ColorFunction Ø Hclr@ÒD &L, Mesh Ø 880, 0.1, 0.2, 0.3, 0.4<, 8-.4, -.2, 0, .2, .4<<,
PlotRange Ø All, DataRange Ø 880, .4<, 8-.5, .5<<, ColorFunctionScaling Ø False,

Epilog Ø 9Inset@Text@Style@"c1", 16DD, Scaled@8.9, .9<DD,

InsetATextAStyleA"ky", 16EE, Scaled@8.9, .1<DE,

Inset@Text@Style@"w", 16DD, Scaled@8.1, .9<DD=E; p2 = ListDensityPlot@

5 µ 10^H4L Transpose@Table@Akw10@@Range@150, 250D, i + 10, iDD, 8i, 20, 60<DD,
ColorFunction Ø Hclr@ÒD &L, Mesh Ø 88.2, 0.3, 0.4, 0.5, 0.6<, 8-.4, -.2, 0, .2, .4<<,
PlotRange Ø All, DataRange Ø 88.2, .6<, 8-.5, .5<<, ColorFunctionScaling Ø False,

Epilog Ø 8Inset@Text@Style@"c3", 16DD, Scaled@8.9, .9<DD,
Inset@Text@Style@"kx", 16DD, Scaled@8.9, .1<DD,
Inset@Text@Style@"w", 16DD, Scaled@8.1, .9<DD<D; p3 = ListDensityPlot@

5 µ 10^H4L Transpose@Table@Akw10@@Range@150, 250D, i, i + 10DD, 8i, 20, 60<DD,
ColorFunction Ø Hclr@ÒD &L, Mesh Ø 880.3, 0.4, 0.5, 0.6, 0.7<, 8-.4, -.2, 0, .2, .4<<,
PlotRange Ø All, DataRange Ø 88.3, .7<, 8-.5, .5<<, ColorFunctionScaling Ø False,

Epilog Ø 8Inset@Text@Style@"c2", 16DD, Scaled@8.9, .9<DD, Inset@Text@Style@"kx", 16DD,
Scaled@8.9, .1<DD, Inset@Text@Style@"w", 16DD, Scaled@8.1, .9<DD<D;

p4 = ListDensityPlotA5 µ 10^H4L Akwstripe@@Range@150, 250D, Range@1, 40D, 100DD,

ColorFunction Ø Hclr@ÒD &L, Mesh Ø 880, 0.1, 0.2, 0.3, 0.4<, 8-.4, -.2, 0, .2, .4<<,
PlotRange Ø All, DataRange Ø 880, .4<, 8-.5, .5<<, ColorFunctionScaling Ø False,

Epilog Ø 9Inset@Text@Style@"a1", 16DD, Scaled@8.9, .9<DD,

InsetATextAStyleA"ky", 16EE, Scaled@8.9, .1<DE,

Inset@Text@Style@"w", 16DD, Scaled@8.1, .9<DD=E; p5 = ListDensityPlot@

5 µ 10^H4L Transpose@Table@Akwstripe@@Range@150, 250D, i + 10, iDD, 8i, 20, 60<DD,
ColorFunction Ø Hclr@ÒD &L, Mesh Ø 88.2, 0.3, 0.4, 0.5, 0.6<, 8-.4, -.2, 0, .2, .4<<,
PlotRange Ø All, DataRange Ø 88.2, .6<, 8-.5, .5<<, ColorFunctionScaling Ø False,

Epilog Ø 8Inset@Text@Style@"a3", 16DD, Scaled@8.9, .9<DD,
Inset@Text@Style@"kx", 16DD, Scaled@8.9, .1<DD,
Inset@Text@Style@"w", 16DD, Scaled@8.1, .9<DD<D; p6 = ListDensityPlot@

5 µ 10^H4L Transpose@Table@Akwstripe@@Range@150, 250D, i, i + 10DD, 8i, 20, 60<DD,
ColorFunction Ø Hclr@ÒD &L, Mesh Ø 880.3, 0.4, 0.5, 0.6, 0.7<, 8-.4, -.2, 0, .2, .4<<,
PlotRange Ø All, DataRange Ø 88.3, .7<, 8-.5, .5<<, ColorFunctionScaling Ø False,

Epilog Ø 8Inset@Text@Style@"a2", 16DD, Scaled@8.9, .9<DD, Inset@Text@Style@"kx", 16DD,
Scaled@8.9, .1<DD, Inset@Text@Style@"w", 16DD, Scaled@8.1, .9<DD<D;

ff = GraphicsGrid@88p4, p6, p5<, 8p1, p3, p2<<, Spacings Ø 2D

Out[235]=

figures.nb   7

FIG. 3:

A(k, �)

Tuesday, May 8, 12



17

ARPES stems from it’s ease of applicability to any data set regardless of how well the 

underlying spectrum is (or is not) understood from first principles. 

 

5. Energy distribution curves (EDCs) associated with the normal state spectra 

recorded for the underdoped (Tc = 65K) material. 
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Figure SI.2  Panels (a), (b) and (c) show spectral plots on moving away from the node as 

indicated in the schematic.  The plots are recoded in the normal state at a temperature of 

140K.  Panels (d) and (e) show EDCs taken from the spectral plots (b) and (c).  The 

dashed lines on panels (d) and (e) indicate the peak positions on the dispersing bands.  
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In[232]:= Akw11cut = Akw11@@All, All, Range@1, 100DDD; Akw10cut = Akw10@@All, All, Range@1, 100DDD;

In[225]:= clr@x_D = RGBColor@Min@4 - 4 x, 1D, Max@1 - 1.5 x, 0D, Max@1 - 4 x, 0DD;

In[233]:= p1 = ListDensityPlotA

4 µ 10^H4L 0.5 HAkw10cut@@200, All, AllDD + Transpose@Akw10cut@@200, All, AllDDDL,
ColorFunction Ø Hclr@ÒD &L, Mesh Ø 3, PlotRange Ø All, DataRange Ø 880, 1<, 80, 1<<,
FrameTicks Ø 880.0, 0.25, 0.5, 0.75, 1.0<, 80.0, 0.25, 0.5, 0.75, 1.0<, None, None<,

ColorFunctionScaling Ø False, Epilog Ø 9Inset@Text@Style@"a", 16DD, Scaled@8.9, .9<DD,

Inset@Text@Style@"kx", 16DD, Scaled@8.9, .1<DD,

InsetATextAStyleA"ky", 16EE, Scaled@8.1, .9<DE=E; p2 = ListDensityPlotA

4 µ 10^H4L 0.5 HAkw11cut@@200, All, AllDD + Transpose@Akw11cut@@200, All, AllDDDL,
ColorFunction Ø Hclr@ÒD &L, Mesh Ø 3, PlotRange Ø All, DataRange Ø 880, 1<, 80, 1<<,
FrameTicks Ø 880.0, 0.25, 0.5, 0.75, 1.0<, 80.0, 0.25, 0.5, 0.75, 1.0<, None, None<,

ColorFunctionScaling Ø False, Epilog Ø 9Inset@Text@Style@"b", 16DD, Scaled@8.9, .9<DD,

Inset@Text@Style@"kx", 16DD, Scaled@8.9, .1<DD, InsetATextAStyleA"ky", 16EE,

Scaled@8.1, .9<DE=E; GraphicsGrid@88p1, p2<<, Spacings Ø 2D
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ListDensityPlotA

4 µ 10^H4L 0.5 HHAkw10scut@@200, All, AllDD + Transpose@Akw10scut@@200, All, AllDDDL +

HAkw11cut@@200, All, AllDD + Transpose@Akw11cut@@200, All, AllDDDLL,
ColorFunction Ø Hclr@ÒD &L, Mesh Ø 3, PlotRange Ø All, DataRange Ø 880, 1<, 80, 1<<,
FrameTicks Ø 880.0, 0.25, 0.5, 0.75, 1.0<, 80.0, 0.25, 0.5, 0.75, 1.0<, None, None<,
ColorFunctionScaling Ø False,

Epilog Ø 9Inset@Text@Style@"d", 16DD, Scaled@8.9, .9<DD, Inset@Text@Style@"kx", 16DD,

Scaled@8.9, .1<DD, InsetATextAStyleA"ky", 16EE, Scaled@8.1, .9<DE=E
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In[157]:= ListPlot@8dosstripe002@@Range@150, 250DDD, H1 ê 3L dos10@@Range@150, 250DDD<,
PlotJoined Ø True, DataRange Ø 8-.5, .5<, Ticks Ø 8Automatic, None<,
AxesOrigin Ø 80, 0<, Frame Ø True, FrameTicks Ø 8Automatic, None, None, None<,
PlotStyle Ø 88Black, Dashed, Thick<, 8Black, Thick<<,
Epilog Ø 8H*Inset@Text@Style@"DOS",16DD,Scaled@8.15,.9<DD,*L

Inset@Text@Style@"w", 16DD, Scaled@8.9, .1<DD, Inset@Text@Style@"-", 16DD, 80, 0<D<D
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In[160]:= ListPlot@8dos10@@Range@170, 230DDD, 1 + dos10d0005@@Range@170, 230DDD,
2 + dos10d001@@Range@170, 230DDD<, PlotJoined Ø True, DataRange Ø 8-.3, .3<,

AxesOrigin Ø 80, 0<, Frame Ø True, FrameTicks Ø 8Automatic, None, None, None<,
PlotStyle Ø 88Black, Thick<, 8Blue, Dashed, Thick<, 8Red, Dotted, Thick<<,
Epilog Ø 8H*Inset@Text@Style@"DOS",16DD,Scaled@8.06,.93<DD,*L

Inset@Text@Style@"w", 16DD, Scaled@8.9, .1<DD, Inset@Text@Style@"-", 16DD, 80, 0<D,
Inset@Text@Style@"-", 16, BlueDD, 80, 1<D, Inset@Text@Style@"-", 16, RedDD, 80, 2<D<D
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FIG. 5: m = 0.33,µ = �1.0, (�0 = 0) solid is for �d = 0.25
(� = 0.01, Nx = 200 and averaged over three runs), dashed is
for �d = 0.0 (� = 0.02)

that the nodal band disperses through the Fermi energy
and consequently will not have a minimum dos at ⇥ = 0.
This is a distinct feature that we argue should be realized
in STM measurements of the DOS in the normal state
if these are to be consistent with the ARPES signature
of quasiparticle band dispersion through �F . If this is
not the case then we expect that low-energy DOS is still
dominated by particle-hole symmetric antinodal spectral
weight. In our simulations we can study this directly by
integrating the spectral weight over only nodal or antin-
odal weight. In general (not for the example shown here)
we find that the dos is dominated by the antinodal weight
even at low energy (because there is not a clean gap) such
that the total DOS comes has a minimum at ⇥ = 0 de-
spite the fact that the nodal contribution may not. Re-
cent STM data (Davis unpub, Yazdani unpub, Yazdani
something published?) does seem to find a small shift of
the minimum to ⇥ > 0 in the normal state.

III. WITH UNIFORM D-WAVE GAP

For a system (such as BSCCO) which has glassy stripe
order we expect that only the zero momentum pairing
component will order and as a compromise between dif-
ferent stripe orientations assume a d-wave from. (restora-
tion of symmetry, assumes correlation length of SC long?)

Out[58]=

FIG. 6: Nodal (solid) versus antinodal (dashed) low energy
DOS and total (dotted) DOS. We find an approximately
particle-hole symmetric antinodal pseudogap and a DOS con-
sistent with a band dispersing through the Fermi energy in
the nodal region. The nodal weight has a minimum at the
edge of the nodal band where the pocket closes. Inset shows
the spectral weight (c.f. Fig.2b) at the Fermi energy and the
shaded (white) regions of the BZ are integrated over to get
the antinodal (nodal) DOS.

In[224]:= ListPlot@Transpose@ldos10d001@@Range@150, 250D, 81, 3<DDD,
PlotJoined Ø True, PlotStyle Ø 88Black, Thick<, 8Black, Dashed, Thick<<,
Frame Ø True, DataRange Ø 8-.5, .5<, FrameTicks Ø 8Automatic, 80<, None, None<,
Epilog Ø 8H*Inset@Text@Style@"DOS",16DD,Scaled@8.06,.93<DD,*L

Inset@Text@Style@"w", 16DD, Scaled@8.9, .1<DD<D
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In[222]:= ListPlot@Transpose@ldos10d001@@Range@150, 250D, 81, 3<DDD, PlotJoined Ø True,

DataRange Ø 8-.5, .5<, Ticks Ø 8Automatic, None<, AxesOrigin Ø 80, 0<D
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FIG. 7: Average ldos on hole rich stripes (solid) and hole poor
stripes (dashed).

We will take
With such a homogeneous d-wave OP the Fermi arc is

gapped as expected, and correspondingly a sub gap peak
appears in the DOS which is a signature of the gapped
Fermi arc. The evolution from a pseudogapped normal
state with nodal hole pocket and possibly a minimum of
the DOS at ⇥ > 0 into a d-wave gapped superconducting
state with a characteristic subgap peak.

�0(cos kx � cos ky)
-important point: the stripe band is robust, in a stripe

potential (SDW) and at moderate doping. (For smaller
doping it will shift closer to the nodal region but will not
give nodal weight.)

-overall asymmetry of dos comes from t� < 0, sharp
rise at w ⇥ �0.25 (depending on m) comes from the van
Hove singularity at the edge of the stripe band.

Single-particle caricature of correlated spin gapped
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FIG. 1: Fermi surface and band structure of the La-Bi2201 UD18K sample (underdoped, Tc=18

K) measured at a temperature of 14 K. (a). Photoemission intensity at the Fermi energy (EF ) as

a function of kx and ky. Four Fermi surface sheets are resolved in the covered momentum space,

marked as LM for the main sheet, LP for the Fermi pocket, and LS and LPS for the others. (b-f)

show band structure (bottom panels) and corresponding momentum distribution curves (MDCs)

at the Fermi level (upper panels) along five typical momentum cuts (cuts 1 to 5) as labeled in Fig.

1a. To see the weak features more clearly, the original MDCs (thin grey lines) in the upper panel

are expanded 10 times and plotted in the same figures (thick black lines).
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Line cuts, EDCs

Symmetrized “Fermi surface” w.r.t. stripe orientation:

n � 0.16 n � 0.20
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FIG. 8: same as Fig5 with �0 = 0 (solid), �0 = 0.05
(dashed), �0 = 0.1 (dotted)

state on charge stripe: local BCS term
(-the stripe potential does not necessarily correspond

to the magnitude of the local magnetization but is rather
a way to represent the local correlations ???)

-pseudogap state: local pairing on charge stripes-
¿antinodal gap, because the antinodal states of the stripe
ordered system “live” mostly on the charge stripes. The
Fermi arc is not an e�ect of phase disordered d-wave par-
ing (not a smeared node) as seen from similar antinodal
gap for a s-like local pairing.

-pseudogap comes from RVB or similar (Luther-
Emery) state on the charge stripes. It is singlet pairing
(spin gap) but not s.c. Spin gap but no charge gap?

-the antinodal pseudogap and Fermi arc is a result of

stripe correlations, SDW (and CDW) and pair correla-
tions. The actual gapping of antinodal weight is due to
pair correlations, but the characteristic pseudogap ldos
depend on both?

-antinodal gap is p-h symmetric, it is a pairing gap. In
nodal region arc or (vague) pocket. The latter must be
confirmed for present set up

-s.c state: still finite momentum pair correlations, but
because phase coherence is established between stripe
patches with di�erent orientations only component that
orders is a homogeneous q=0 component (plain d-wave).
This opens up a p-h symmetric gap along the Fermi arc.
Here we can present also the sc OP, has most weight in
the nodal region??..(check again)

-in the ldos the in-gap peak comes from the sc gap on
the Fermi arc

-for the normal state ldos, well above Tc, we would
not expect necessarily a p-h symmetric dos at low en-
ergy because of the residual Fermi surface (pocket or arc)
which corresponds to a nodal band dispersing through
the Fermi energy. The details of which is sensitive to the
precise potential used.

IV. THE STRIPE ORDERED
SUPERCONDUCTOR

If there is long range stripe (CDW) order we generi-
cally expect finite momentum (FFLO) pairing. We ex-
pect such a state to be relevant to LBCO at 1/8 doping.
Here we consider briefly the state where we lock the phase
uniformly in our model of pairing on stripes.

� Electronic address: mats.granath@physics.gu.se

Superconducting state
For a  stripe glass state we expect only q=0 pairing to order:

� =0 .1t
� =0 .05t

� =0

�(cos kx � cos ky)
Pseudogap from on-stripe pairing

Gapping of the nodal pocket
Fig. 1. (A) Spectra taken at one atomically resolved
location on an underdoped Bi2Sr2CaCu2O8+d sample
(Tc = 61 K, UD61) at various temperatures. The
spectra show two features at low temperature, the
smaller of which (red arrow) disappears at higher
temperatures. The higher-energy feature ∆0 (black ar-
row) compares well with the anti-nodal gap measure-
ments from ARPES. (B) ∆0 sorted, averaged spectra at
13 K from 8192 spectral measurements on another
underdoped Bi2Sr2CaCu2O8+d sample (Tc = 58 K,
UD58), for different temperatures and values of ∆0.
The spectra are normalized by the mean over the
whole bias range shown (each offset by 0.5). (C) A
spatial map at 13 K showing the variation of ∆0. The
colored regions represent areas where ∆0 is nearest
to the correspondingly colored spectrum in (B).

20 K

30 K

40 K

50 K

55 K

61 K

66 K

71 K

76 K

81 K

Bias (mV)

D
iff

er
en

tia
l C

on
du

ct
an

ce
 (p

S
)

200 100 0 100 200
0

50

100

150

200

13 K

20 K

30 K

41 K

52 K

58 K

63 K

68 K

71 K

Bias (mV)

N
or

m
al

iz
ed

 C
on

du
ct

an
ce

200 100 0 100 200
0

1

2

3

4

5

6

A B

C

0

60
mV

 > 120
mV

Fig. 2. (A) Average dI/dV spectra (orange circles)
from D0 sorted spectra on sample UD58 and the
fit (solid blue line) as described in the text. The
procedure is applied separately to the positive and
negative sides. The curves are offset by 35 pS. (B)
The weights of the corresponding positive side fits
in (A), expressed as a fraction of the total weight
for each gap size (each offset by 0.15). (C)
Cumulative weights (x axis) obtained by summing
the corresponding histogram for each gap size (y
axis). The x axis would be proportional to the
angle around the Fermi surface for a cylindrical
band structure. (D) Gap as a function of angle as
extracted from the fits, using the ARPES band
structure (27).
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enology is naturally suggestive of a competition between a
pseudogap state of nonpairing origin and a more traditional
superconducting state. In the present model where the
pseudogap is a pairing gap we have in mind an alternative
scenario in which the pairing arises on the stripes which then
infects the extended nodal states where the actual phase-
coherent pair density is formed. Although this mechanism is
not contained in the model we may speculate that the antin-
odal spectral weight cannot couple coherently, possibly be-
cause the pseudogapped states are too localized or because
the corresponding local pair density has most of the weight
in finite-momentum components.

V. DISCUSSION

The model proposed in this paper does not fall into the
conventional separation of scenarios for the pseudogap state:
either preformed pairs or competing order. Our scenario con-
tains both an order !SDW and CDW stripes" and concomitant
local singlet pairing states which give rise to the spectro-
scopic antinodal pseudogap. Surprisingly, however, the
Fermi arc on the nodal hole pocket is unaffected by this
pseudogap mechanism irrespective of whether the local pair-
ing symmetry is of s- or d-wave type. For the ordered SDW
stripes studies here, the Fermi arc is the front side of the
nodal hole pocket. However, in a more realistic short-range
glassy phase the pocket is wiped out and replaced by a single
arc.50,63

As mentioned above, the phase disorder has negligible
effects on the extended nodal states since the effective pair-
ing potential averages to zero for these states. One can get
additional understanding of the role of phase disorder by
comparing to a stripe state with nonzero pairing and fixed
phase #i.e., !n=0 for all n in Eq. !3"$. In such a phase-
ordered stripe state, the pairing leads to nodal points at the
Fermi energy, and from this respect the phase disorder is
crucial for generating a Fermi arc. The origin of this in-
creased spectral weight at the Fermi level can be traced to
the fact that significant phase differences !e.g., "-phase

shifts" between d-wave superconducting regions separated
by antiferromagnetic regions generates low-energy
states.72,73

A recent study of thermal phase fluctuations of a d-wave
superconductor also found the presence of a Fermi arc.74 In
that work too, the phase disorder is crucial for generating the
arc, but contrary to the present approach, no pocket exists in
the nodal region from SDW ordering. Even though the
pocket could be destroyed by disorder one may be able to
distinguish these scenarios for the Fermi arc by searching for
particle-hole symmetry in the near-nodal region, a property
that should be absent in that region of momentum space
within the approach presented here. !The latter in agreement
with the recent analysis of ARPES measurements by Yang et
al.19"

Experimentally it has also been found that the Fermi arc-
length scales with T /T!.75 Even though extension of the
present model to a self consistent study of finite T effects is
beyond the scope of this paper, we remark that a model of
granular antiferromagnetic and d-wave superconducting is-
lands found that the phase disorder can indeed generate a T
dependence of the Fermi arc,73 similarly to the work by Berg
and Altman.74 For the present model it is natural for the arc
length to vary inversely to the magnitude of the SDW poten-
tial which in mean field is expected to grow with decreasing
temperature. Whether or not such a variation can quantita-
tively reproduce the experimentally observed variations in
arc length with temperature remains to be explored in more
detail.76

Because the pseudogap proposed here remains at the
Fermi level !modulo a possible small shift" it explains the
smooth evolution of the spatially averaged DOS as a func-
tion of temperature from the superconducting state into the
pseudogap state.27,38,40,41 As we have shown, nodal states are
extended whereas antinodal states are localized effectively
on individual stripes in overall agreement with recent con-

-0.4 -0.2 0.0 0.2 0.4

0

w

FIG. 11. Local density of states in the superconducting state on
!solid line" and off !dashed line" a charge stripe. The parameters
used for this curve are similar to the dotted line in Fig. 10. The
overall collapse of these two curves at low-energy results in real-
space homogeneity at low tunneling bias whereas the difference in
LDOS at high energy will show up as stripes in the real-space STM
field of view.

FIG. 12. !Color online" Zero-momentum component of the pair
density for parameters identical to the dashed curve in Fig. 10; m
= t /3, #h=0.05t, #d=0.25t, and $=−t. The shading indicates the
deviation from zero. The weight is along the tight-binding Fermi
surface with highest intensity on the nodal pocket of the pseudogap
state. The real part is plotted, there is also a smaller imaginary part
!not shown" from the phase-disordered on-stripe pairing.

MATS GRANATH AND BRIAN M. ANDERSEN PHYSICAL REVIEW B 81, 024501 !2010"
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Coherent pair density on (nodal) 
part of Fermi surface

as a density-wave state24–29 or an ordered dimer state30. It is because of
this competition that some parts of the Fermi surface do not develop
superconducting coherence, which leads to the unusual supercon-
ducting response of the underdoped copper oxides14,22.
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Figure 3 | Momentum dependence of the magnitudes of spectral gap and
the coherent and pseudogap spectral weights in overdoped, optimally
doped and underdoped Bi2201 samples. a–c, Momentum dependence of
the spectral gap below and above Tc in samples OD29K (a), OP35K (b) and
UD23K (c). Dotted lines represent a cos(2w) fit to data in the nodal region.
Error bars in a–c are estimated at61meV in the superconducting state and
62meV in the pseudogap state, and account for the uncertainty in the fitting
procedure. d–f, Spectral weight lost to the pseudogap (red) and the coherent
spectral weight (blue) plotted as a function of the Fermi surface angle, w, and
expressed as a percentage of the total spectral weight integrated between
m2 300meV and m1 300meV for the overdoped (Tc5 29K, d), optimally
doped (Tc5 35K, e) and underdoped (Tc5 23K, f) samples. Low-energy
spectral weight loss in the pseudogap state was obtained by subtracting
spectrameasured above T* from those obtained at 40K and then integrating
over an energy range where the difference was negative (see Fig. 1h inset).
For the OD29K, OP35K and UD23K samples, the values of T* were
respectively 110K, 130K and 240K (see Supplementary Fig. 1). The arrows
indicate the w range of the coherent Fermi surface (that is, where the weight
of the coherent peak dominates over the pseudogap weight). We note that
this range shrinks with underdoping. g, Plot of WCP versus WPG,
demonstrating the anticorrelation between the two quantities. The data
points correspond to the range of Fermi angles, where weight lost to the
pseudogap is finite: w, 15u for OD29K, w, 25u for OP35K, w, 30u for
UD23K. h, Ratio of WCP to the total change in the spectral weight
(WCP1WPG) for the three doping levels. Error bars in d–h reflect the
maximum uncertainty due to normalization.
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Anomalous spectral broadening and shift of kF
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dispersion is shown in blue curve with its thickness proportional to the peak 

intensity. Note that in a, the back-bending momentum remains robustly aligned 

with kF irrespective of !, in contrast to b-d. For b and c, also note that a 

pronounced upshift of the band bottom commonly requires a decreasing V which 

inevitably results in corresponding changes of the back-bending position, in 

contrast to the “pinning” of it possibly observed below ~ 50 K (Fig. 1n). This could 

be consistent with the reported temperature independence of back-bending 

momenta across Tc
 12, and poses a challenge for the exclusive density-wave 

picture put in such simple ways. See details in Supplementary Method. 
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clusions from, e.g., tunneling spectroscopy.36 The nodal band
can cause a slight shift of the DOS minimum to positive bias
in the pseudogap state similar to what has been seen by re-
cent STM measurements at T!Tc.38,65 From the ARPES evi-
dence of a quasiparticle band dispersion through the Fermi
level together with an antinodal gap, this shift is something
we expect on general grounds, and should be explored fur-
ther by future tunneling experiments.

The superconducting q=0 condensate at T"Tc essentially
“lives on top of” the pseudogap phase and its main spectro-
scopic effect is to gap the states at the Fermi arc. The super-
conducting gap gives rise to a subgap structure at T"Tc
within the pseudogap DOS. Interestingly, subgap features in
the spatially averaged DOS which disappear above Tc have
been recently pointed out by several STM experiments of
underdoped cuprates.27,77,78 A very interesting aspect of the
present model for the superconducting state is that it natu-
rally incorporates the existence of spatially varying local
pairing amplitudes. This aspect was previously proven suc-
cessful in describing salient features of the LDOS gap modu-
lations measured by STM at T"Tc.33,79 Specifically, it repro-
duces the presence of sharp coherence peaks in small gap
regions80,81 and the granular transition through Tc observed
by Gomes et al.26,82 It is an interesting future study to extend
the present model to include more realistic disorder configu-
rations and determine whether the spatially resolved LDOS
is in further agreement with STM data. In the superconduct-
ing state we have seen that the low-energy LDOS is roughly
constant !in space" within this approach but it is known that
correlations which penalize charge fluctuations will further
stabilize nodal LDOS universality.83,84 Also it will be inter-
esting to see whether the present approach can reproduce the
k-space dichotomy seen by Fourier-transformed STM maps
between the low- and high-energy momenta.38 In addition an
essential aspect of the model is that the antinodal “stripe”
states are localized by disorder in the phase of the local pair
potential. An interesting question is whether similar localiza-
tion may perhaps more realistically be caused by stripe
density-wave disorder.

Lastly, since the present model assumes SDW order it
includes per construction local moments which, as shown
recently, are present even in the magnetic response of the
BSCCO materials.13 The overall hour-glass neutron response

is therefore fully compatible with the present model even
though one may have to include glassy disorder and/or soft
fluctuations to reproduce details of the measured low-energy
magnetic fluctuations.

VI. CONCLUSIONS

We presented a phenomenological model for the
pseudogap state consisting of stripe spin- and charge-
density-wave order with phase-decoupled on-stripe singlet
pairing. This phase is characterized by extended states giving
rise to a nodal hole pocket and gapped antinodal states that
are localized transverse to the stripes. The spectral function
exhibits particle-hole symmetry characteristic of a pairing
gap in the antinodal region whereas in the near-nodal region
just outside the hole pocket the gap is due to stripe order and
does not display particle-hole symmetry. The nodal disper-
sion has the appearance of a normal metal at the Fermi level
but contains a kink and broadening below the pseudogap
energy scale. The spatially averaged DOS has a gap at the
Fermi level and is also roughly particle-hole symmetric in
the pseudogap state even though a small shift arising from
the nodal band may be observable. Finally we also discussed
a superconducting state coexisting with the pseudogap where
the nodal pocket becomes gapped. Here we find a character-
istic subgap peak in the DOS and a coherent pair density
with most of the weight in the nodal region.

After the submission of this work a new ARPES study of
the pseudogap state in underdoped Bi2201 appeared.85 An
extended temperature regime ranging from above the
pseudogap transition T! to below the superconducting tran-
sition was studied and found a conspicuous shift of the anti-
nodal gap minimum momentum in the pseudogap state com-
pared to kF above T! as well as an unexpected additional
spectral broadening in the superconducting state. The ob-
served shift suggests that the antinodal pseudogap is not !ex-
clusively" a pairing gap. In light of this new ARPES data we
realized that these qualitative features were already present
in the model considered in this paper. We thus present an
additional Fig. 13 using our earlier calculations showing a
comparison between antinodal spectral weight cuts for the
bare-band structure !modeling the region T!T!", the

FIG. 13. !Color online" Antinodal spectral weight cut !1 in Fig. 2", for !a" bare-band structure, m=#d=#h=0, !b" pseudogap state m
= t /3 and #d= t /4, and !c" superconducting state m= t /3, #d= t /4, and #h=0.1t as discussed in the text. #!b" is identical to Fig. 4c1.$

MODELING A STRIPED PSEUDOGAP STATE PHYSICAL REVIEW B 81, 024501 !2010"
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two-leg ladders and ladders of width N, denoting such an
array by the period N+2. Here we explore only solutions
where the two-leg ladders have !0,!" !antiphase" spin order
and the N-leg ladder has a dominant AF !! ,!" component,
i.e., bond-centered stripes. We call the two-leg ladder, which
will self-consistently contain most of the doped holes,
“charge-stripe” and the width N ladder “spin-stripe,” and
take the doping to be 0.5 holes per unit length per charge-
stripe !i.e., per N+2 charge period". These are solutions
which obey the canonical relation between magnetic “incom-
mensurability” and doping.19

Our main results will follow from studying the
period-4 and period-5 arrays which correspond to
12.5% and 10% doping respectively. The 4-array
has an 8"2 magnetic unit cell with magnetization
!−1"x!Me ,−Me ,Ms ,Ms ,−Me ,Me ,−Ms ,−Ms" and density
variation !# ,# ,−# ,−# , . . . " whereas the 5-array has a
5"2 unit cell with !−1"x!Me ,−Mc ,Me ,−Ms ,−Ms" and
! 2

3#− 1
2#c , 2

3#+#c , 2
3#− 1

2#c ,−# ,−#" !see Fig. 2", where all of
the M and # parameters are solved for self-consistently.
Figure 3 shows the evolution with $ of the band structure for
the longitudinal momentum k#. The antiferromagnetic

scattering along the stripes folds the bands around k# =! /2,
opening gaps between an upper and lower branch and the
interladder hopping successively broaden the bands. For the
one-dimensional band structure $Figs. 3!a" and 3!d"% the
!dashed" charge-stripe bands are roughly the same for both
arrays with the lower branch of the antibonding band of the
two-leg ladder crossing the Fermi level around ! /4 and
3! /4. The spin-stripe bands on the other hand are distinct as
they derive from 3-leg and 2-leg ladders, respectively.

III. NODAL-ANTINODAL DICHOTOMY

Now for the main observation of the paper; the active
charge-stripe band stays very slim even when the hopping is
fully two-dimensional $Figs. 3!c" and 3!f"%, implying a very
small dispersion in the transverse direction, i.e., essentially
one-dimensional. This is in sharp contrast to the behavior of
the spectral weight below the Fermi level at momenta around
! /2 where the fatter distribution implies a significant disper-
sion with the transverse momentum. To make this distinction
clearer we introduce disorder. In order to be able to work
with large system sizes we will use one-dimensional
quenched disorder in the form of a weak random potential on
each chain such that Hdisorder=a&ix%inix where −1&%i&1 is
a random variable. We define the transverse participation ra-
tio of a state 'ix as P!=&i!&x''ix'2"2( 1

2(!
−1 with (! being

the transverse localization length. Figure 4 shows the mean
of the localization lengths of the states near the Fermi level
for the period-5 array with uniform hopping for weak disor-
der a=0.1 and using a flat distribution for %. !Here we do not
solve the problem self-consistently, but simply use the values
for the staggered magnetization and inhomogeneous poten-
tial of the ordered array." We find that the localization length
of the charge-stripe states !k# )! /4" is significantly shorter
than that of the spin-stripe states !k# )! /4" as expected from
the difference in transverse bandwidth. The localization
length of the charge-stripe states is of the order of the stripe
spacing, thus essentially localized on individual charge-
stripes. The localization length of the spin-stripe states is

FIG. 2. Fraction of one hole !bold" and direction and magnitude
of the magnetization for the period-5 array with uniform hopping
!$=1". The magnetic unit cell pictured contains one doped hole for
an overall doping of 10%.

FIG. 3. Band structure of the charge periods 5 !top" and 4 !bot-
tom" bond-centered stripe arrays showing the evolution with inter-
stripe hopping for $=0 !left", $=0.5 !center", and $=1 !right". In
!a" and !d" the dashed lines correspond to “charge-stripe” states and
the solid lines to “spin-stripe” states as defined in the text. The
energy window is −3 to 0.5 !units of t" and the momentum k# along
the stripes ranges from 0 to ! !units of inverse lattice spacing". The
Fermi energy which corresponds to 10% !a"–!c" and 12.5% !d"–!f"
hole doping is given by the horizontal lines. The dashed region in
!c" shows the integration window for the “Fermi surface” in Fig. 5.

FIG. 4. !Color online" Mean localization length vs momenta
along the stripes of all states in a 0.5 window below the Fermi level
for a period-5 array with weak !a=0.1" one-dimensional quenched
potential disorder. Inset shows only the “charge-stripe” states with
k# )! /4. Results are averaged over at least ten runs with transverse
system size L!=100, 300, 600, and 900 corresponding to increasing
(̄!. $(̄!!k#"=0 means that there are no states in the integration win-
dow at that k#.%
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Why antinodal gap?

Band that gives antinodal weight is narrow, “localized” on stripes, 
thus gapped by local pairing 

M.G. PRB 2006

servations of high frequency quantum oscillations of the Hall
resistivity in strong magnetic fields in YBa2Cu3Oy that seem
to imply small Fermi pockets.15–17 We show that this exact
distinction is found between a system with long-range spin-
stripe order and a system with only short-range spin-stripe
correlations. In simulations of commensurate stripe ordered
systems !Fig. 1", we find a nodal region hole pocket together
with a quasi-one dimensional Fermi surface section that are
replaced by a large Fermi surface in a disordered stripe sys-
tem !Fig. 5". It is known that a c-axis magnetic field can
enhance stripe order,1,18 thus providing a possible connection
to the observations of quantum oscillations. If the high-field
measurements indeed probe a stripe ordered state, which the
ARPES measurements generally do not, our results may thus
provide an explanation for the apparent discrepancy between
the two probes wherein the Fermi arc could be regarded as
the remnant in the disordered state of a nodal hole pocket.

In light of this, we also consider the implications of the
enlarged stripe unit cell and find that the hole density of a
hole pocket will be decreased by factors of 2 for even charge
period and 4 for odd charge period compared to an estimate
that assumes no long-range order. Based only on the stripe

periodicity, we can also set an estimated upper limit to the
size of a nodal hole pocket of 1.6% of the full Brillouin zone
for a period four stripe and 4% for a period five stripe with
larger pockets merging into open sections. From the canoni-
cal relation between doping and stripe periodicity,1 we may
expect period five for “1/10” doping and period four for
“1/8” doping. Quantum oscillations have been observed for
doping close to 1/10, whereas for 1/8 doping, the high-field
limit remains to be explored.16,19 For the period four stripes,
we expect either no oscillations, which correspond to only
open orbits, or possibly a smaller frequency of up to 450 T,
which corresponds to the maximum pocket size. If a sharp
distinction is found between 1/8 and 1/10, it would be a
dramatic confirmation of stripe order.

Although hole pockets may explain the frequency of
quantum oscillations, they cannot explain why the Hall co-
efficient !RH" may be negative at low temperature.15,16,20

This has led to suggestions of the formation of electron
pockets due to broken translational symmetry.21,22 However,
the locations of such electron pockets are in regions of the
Brillouin zone #along !0,0" to !! ,0"$ where there is no evi-
dence from photoemission of any substantial spectral weight
and they must be considered highly speculative. For a stripe
ordered system, in particular, we argue that electron pockets
arise only as an artifact of a mean-field-type description that
effectively ignores the interactions on a stripe.

Here, instead, we show that the stripe band with open
orbits may be electronlike, thus providing an alternative ex-
planation for a negative Hall coefficient. The sign of RH for
the stripe band sensitively depends on the changes in the
Fermi velocity over the Fermi surface, which depends, in
turn, on the band structure parameters as well as the charac-
ter !strength and periodicity" of the stripe order. The apparent
nonuniversality of the Hall coefficient15,16,20,23,24 in different
materials is not unexpected if stripe order plays a role.

II. MODEL

The model we consider is a tight-binding model on a
square lattice in a static potential that couples to the local
spin density and that may or may not have long-range stripe
order. We can think of the potential as a strong inhomoge-
neous magnetic field that is self-consistently generated from
an interacting model, such as the large-U Hubbard model in
the Hartree–Fock approximation.25 The Hamiltonian reads

H = − t %
&rr!'"

!cr,"
† cr!" + H.c." − t! %

&rr!'!"

!cr,"
† cr!" + H.c."

+ %
x,y,"

"!− 1"yV!x"cx,y,"
† cx,y,", !1"

where cr," is the electron destruction operator at site
r= !x ,y" and with spin "=#. We will also refer to the stripe
perpendicular !x" and stripe parallel !y" directions as x!!k!"
and x(!k(", respectively. The hopping is given in a standard
fashion, where &rr!' indicates the nearest neighbors and
&rr!'! indicates the next-nearest neighbors. We will use en-
ergy units such that t=1 and we take t!=−0.3. For the
Hubbard model with on-site interaction U%rnr↑nr↓, we would
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FIG. 1. !Color online" Low-energy spectral weights of #!a" and
!b"$ period four and !c" and !d" period five bond-centered stripe
ordered systems for stripe potential )V!x")=0.5 and doping given
below. The left column shows the spectral weight as an intensity
plot where the dashed lines are the Bragg planes of the stripe order
at !3! /4,!" and !4! /5,!". The right column shows the full Fermi
surface together with the centermost Bragg planes !dashed lines"
and the first Brillouin zone !highlighted". The size of a pocket in !b"
is 0.7% of one quadrant !0$k( $!, 0$k!$!" and the actual hole
density of the nodal pockets is also 0.7%, with a total hole doping
including the antinodal stripe states of 17.5% !EF=−1.15". The size
of a pocket in !d" is 1.2% of one quadrant, while the hole density of
the nodal pockets is only 0.6%, with a total doping of 12.5%
!EF=−1.0". The boxes show the estimated upper limit to the size of
a pocket as discussed in the text.
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Localization length with weak potential disorder

Tuesday, May 8, 12



21

Summary

•Pseudogap may be RVB stripes (or disordered spin-, charge- 

and pair-density wave order).

•Number of observed spectroscopic signatures follow. 

•Superconductivity from phase coherent pairing on the nodal 
pocket (Fermi arc) 
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