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Figure 2.2: Conformal mapping for the exactG( )

Suppose we have data
fn � a0 + G̃(i⇥n)

where np is the number of poles and where 0 ⇥ n<N representing an approximate pe-
riodized self energy or Greens function at the matsubara frequencies ⇥n. Can we obtain
{a�} and {��} from {fn} ?

How many poles are in principle necessary to fit arbitrary values of fn?. First of all, there
are some symmetries to consider. Our periodized data is assumed to obey fn = (fN�1�n)⇥
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as we have done for the corresponding energies. This,
however, is far from trivial because during the photo-
emission process itself the system will relax. The prob-
lem simplifies within the sudden approximation, which is
extensively used in many-body calculations of photo-
emission spectra from interacting electron systems and
which is in principle applicable only to electrons with
high kinetic energy. In this limit, the photoemission pro-
cess is assumed to be sudden, with no post-collisional
interaction between the photoelectron and the system
left behind (in other words, an electron is instanta-
neously removed and the effective potential of the sys-
tem changes discontinuously at that instant). The
N-particle final state ! f

N can then be written as

! f
N!A " f

k ! f
N"1, (6)

where A is an antisymmetric operator that properly an-
tisymmetrizes the N-electron wave function so that the
Pauli principle is satisfied, " f

k is the wave function of the
photoelectron with momentum k, and ! f

N"1 is the final
state wave function of the (N"1)-electron system left
behind, which can be chosen as an excited state with
eigenfunction !m

N"1 and energy Em
N"1 . The total transi-

tion probability is then given by the sum over all pos-
sible excited states m . Note, however, that the sudden
approximation is inappropriate for photoelectrons with
low kinetic energy, which may need longer than the sys-
tem response time to escape into vacuum. In this case,
the so-called adiabatic limit, one can no longer factorize
! f

N into two independent parts and the detailed screen-
ing of photoelectron and photohole has to be taken into
account (Gadzuk and S̆unjić, 1975). In this regard, it is
important to mention that there is evidence that the sud-
den approximation is justified for the cuprate high-
temperature superconductors even at photon energies as
low as 20 eV (Randeria et al., 1995; Sec. II.C).

For the initial state, let us assume for simplicity that
! i

N is a single Slater determinant (i.e., Hartree-Fock for-
malism), so that we can write it as the product of a one-
electron orbital " i

k and an (N"1)-particle term:

! i
N!A " i

k ! i
N"1. (7)

More generally, however, ! i
N"1 should be expressed as

! i
N"1!ck! i

N , where ck is the annihilation operator for
an electron with momentum k. This also shows that
! i

N"1 is not an eigenstate of the (N"1) particle Hamil-
tonian, but is just what remains of the N-particle wave
function after having pulled out one electron. At this
point, we can write the matrix elements in Eq. (4) as

#! f
N!Hint!! i

N$!#" f
k!Hint!" i

k$#!m
N"1!! i

N"1$ , (8)

where #" f
k!Hint!" i

k$%Mf ,i
k is the one-electron dipole ma-

trix element, and the second term is the (N"1)-electron
overlap integral. Note that here we replaced ! f

N"1 with
an eigenstate !m

N"1 , as discussed above. The total pho-
toemission intensity measured as a function of Ekin at a
momentum k, namely, I(k,Ekin)!& f ,iwf ,i , is then pro-
portional to

&
f ,i

!Mf ,i
k !2&

m
!cm ,i!2'(Ekin#Em

N"1"Ei
N"h)*, (9)

where !cm ,i!2! "#!m
N"1!! i

N"1$ "2 is the probability that
the removal of an electron from state i will leave the
(N"1)-particle system in the excited state m . From this
we can see that, if ! i

N"1!!m0

N"1 for one particular state
m!m0 , then the corresponding !cm0 ,i!2 will be unity
and all the other cm ,i zero; in this case, if Mf ,i

k +0, the
ARPES spectra will be given by a delta function at the
Hartree-Fock orbital energy EB

k !",k , as shown in Fig.
3(b) (i.e., the noninteracting particle picture). In
strongly correlated systems, however, many of the !cm ,i!2

will be different from zero because the removal of the
photoelectron results in a strong change of the systems
effective potential and, in turn, ! i

N"1 will overlap with
many of the eigenstates !m

N"1 . Thus the ARPES spec-
tra will not consist of single delta functions but will show
a main line and several satellites according to the num-
ber of excited states m created in the process [Fig. 3(c)].

This is very similar to the situation encountered in
photoemission from molecular hydrogen (Siegbahn
et al., 1969) in which not simply a single peak but many
lines separated by a few tenths of eV from each other

FIG. 3. Angle-resolved photoemission spetroscopy: (a) geometry of an ARPES experiment in which the emission direction of the
photoelectron is specified by the polar (-) and azimuthal (.) angles; (b) momentum-resolved one-electron removal and addition
spectra for a noninteracting electron system with a single energy band dispersing across EF ; (c) the same spectra for an interacting
Fermi-liquid system (Sawatzky, 1989; Meinders, 1994). For both noninteracting and interacting systems the corresponding ground-
state (T!0 K) momentum distribution function n(k) is also shown. (c) Lower right, photoelectron spectrum of gaseous hydrogen
and the ARPES spectrum of solid hydrogen developed from the gaseous one (Sawatzky, 1989).
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like we have often used in the one-body case.

The previous results are summarized in Fig.(3-5) which displays the analytic

structure of ! (r" r0; #) $ This function is analytical everywhere except on the real
axis where it has a branch cut leading to a jump Eq.(3.128) in the value of the

function as we approach the real axis from either the upper or lower complex half-

plane. The limit as we come from the upper half-plane is equal to !! (r" r0;%)
whereas from the lower half-plane it is equal to !" (r" r0;%) $ The Matsubara
Green’s function is dened only on a discrete but innite set of points along the

imaginary frequency axis.

Im(z)

Re(z)

G(z) = G (!)
R

G(z) = G (!)
A

G(z) = (i!")n

Figure 3-5 Analytical structure of !(#) in the complex frequency plane. !(#)
reduces to either !! (%) " !" (%) or G (&%#) depending on the value of the complex
frequency #$ There is a branch cut along the real axis.

The problem of nding !! (r" r0;%) along the real-time axis from the knowl-

edge of the Matsubara Green’s function is a problem of analytical continuation.

Unfortunately, ! (# = &'#) does not have a unique analytical continuation be-
cause there is an innite number of analytical functions that have the same value

along this discrete set of points. For example, suppose we know! (# = &'#) " then
! (#)

¡
1 +

¡
($% + 1

¢¢
has the same value as ! (#) for all points # = &'# because

(&'!$ + 1 = 0$ Baym and Mermin[13], using results from the theory of complex

functions, have obtained the following result.

Theorem 8 If

1. ! (#) is analytical in the upper half-plane

2. ! (#) = G (&'#) for all Matsubara frequencies

3. lim%!" #! (#) = )*+

then the analytical continuation is unique and

!! (r" r0;%) = lim
&'!!(+&)

G (r" r0; &'#) (3.130)

The key point is the third one on the asymptotic behavior at high frequency.

That this is the correct asymptotic behavior at high frequency follows trivially from

the spectral representation Eq.(3.125) as long as we remember that the spectral

weight is bounded in frequency. The non-trivial statement is that this asymptotic

behavior su!ces to make the analytical continuation unique. In practice this rarely

poses a problem. The simple replacement &'# ! %+ &, su!ces. Nevertheless, the
asymptotic behavior reects a very fundamental property of the physical system,

namely the anticommutation relations! It is thus crucial to check that it is satised.

More on the meaning of the asymptotic behavior in subsection (3.6.1).

MATSUBARA GREEN’S FUNCTION AND ITS RELATION TO USUAL GREEN’S FUNC-
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G(0, i�n) =
�

d�
A(0, �)
i�n � �

P (z)
Q(z)

=
a0 + a1z + ... + am�1zm�1

1 + b1 + ... + bmzm
G(i�n) =

P (i�n)
Q(i�n)

Example: non-interacting Anderson 
impurity
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like we have often used in the one-body case.
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The problem of nding !! (r" r0;%) along the real-time axis from the knowl-
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The key point is the third one on the asymptotic behavior at high frequency.

That this is the correct asymptotic behavior at high frequency follows trivially from

the spectral representation Eq.(3.125) as long as we remember that the spectral

weight is bounded in frequency. The non-trivial statement is that this asymptotic

behavior su!ces to make the analytical continuation unique. In practice this rarely

poses a problem. The simple replacement &'# ! %+ &, su!ces. Nevertheless, the
asymptotic behavior reects a very fundamental property of the physical system,

namely the anticommutation relations! It is thus crucial to check that it is satised.
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40 digit precision does (width 10^(-10)) 
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High precision self-consistent Green’s function calculations
High precision calculations requires a finite basis (?)

Advantage: non-interacting GF and spectral function can be captured exactly.
Spectral weight conservation can be build into the formalism. 

We discretize imaginary time: the GF of the diagrammatic expansion, not the path integral 
directly.

G(� � � �) = G0(� � � �) +
�

d�1d�2G0(� � �1)�(�1 � �2)G0(�2 � � �) + ...

G(⇥i � ⇥j) = G0(⇥i � ⇥j) + (
�

N
)2

N�1�

l,l�=0

G0(⇥i � ⇥l)�(⇥l � ⇥l�)G0(⇥l� � ⇥j) + ...

⇥j =
�

N
j

(ambiguity at �i � �j = 0)

Can we work with a finite set of imaginary frequencies?
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i�n � i�n + i�NPeriodic: �N =
2⇥

�
N

G0,k(i⌅n) =
�

N

N�1�

j=0

ei⇥n�j G0,k(⇤j) =
�

2N
coth

�

2N
(i⌅n � ⇥k)

G0,k(⇤) = e�⇥�k [nf (�k)⇥(�⇤ + 0+) + (nf (�k)� 1)⇥(⇤ � 0+)]

G0,k(⇥j) =
1
�

N�1�

n=0

e�i⇥n�j G0,k(i⇤n)

G0,k(⇥0) = nf (�k)� 1
2

� 0 ��� �

⇥j =
�

N
j

Non-interacting GF
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Dyson equation

Gk(i⇥n) = (i⇥n � �k � �k(i⇥n))�1

Gk(i⇤n) =
�

2N
Coth

�

2N
(i⇤n � ⇥k � �k(i⇤n))

G = G0 + G+
0 �G�0 + G+

0 �G0�G�0 + ...
G±0 = G0 ±

�

2N

� is 1PI diagrams of periodized Green’s functions

G(i⇤n) is periodic G(i⇤n) = G(i⇤n ± i�N ) with �N =
2⇥

�
N
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Analytic Structure/Analytic continuation

Gk(�) = � 1
Z

�

m,n

e��Ene⇥(En�Em)|⇥m|c†k|n⇤|2
Discretize the 

spectral 
representation

Periodic �N =
2⇥

�
N

�4 �2 0 2 4

0

1

2

3

Im�z⇥

⇥

a

�4 �2 0 2 4

0

1

2

3

Im�z⇥

⇥

b

Gk(z) =
�

d⇥A(k, ⇥)
�

2N
Coth

�

2N
(z � ⇥)

A(k, ⇥) =
1
Z

�

m,n

|⇥m|c†k|n⇤|2e��En(1 + e��⇥)�(Em � En � ⇥)
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Represent spectral function in terms of a (set of) generalized Lorentzians

L⇤,⇥(⇤) =
i �
2N

sinh �
2N (⇤ � ⇥ + i�)

�
i �
2N

sinh �
2N (⇤ � ⇥� i�)

2�

(⇤ � ⇥)2 + �2

Reduces to Lorentzian 
for large N:

�4 �2 0 2 4

0

1

2

3

Im�z⇥

⇥

a

�4 �2 0 2 4

0

1

2

3

Im�z⇥

⇥

b

z

⇥+ i� + i�N

⇥� i� + i�N

⇥+ i�

⇥� i�
Re

Im

�⇥ ⇥
�N

C

0 < Imz < �NG(z) =
1
2

⇤

C

dz�

2⌅
L⇥,�(z�)

�

2N
coth

�

2N
(z � z�)

=
�

4N

�
coth

�

4N
(z � ⇤ + i⇥) + tanh

�

4N
(z � ⇤� i⇥)

⇥”GR(z)”
� ⇥

�⇥

d⇥

2�
L(⇥) = 1

Spectral weight 
conserving:
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G(z) =
�

4N

�

�

[a� coth
�

4N
(z � ⇤� + i⇥�) + a�� tanh

�

4N
(z � ⇤� � i⇥�)]

1
2

�

�

(a� + a��) = 1
Spectral weight 
conservation:

Analytic Continuation 13

�2 �1 0 1 2

�⇥N

0

⇥N

2⇥N

�2 �1 0 1 2

�⇥N

0

⇥N

2⇥N

Figure 2.1: The function G(i⇤)

The function G̃n di�ers only from Gn in that we use the tanh and coth functions instead of
the digamma functions to define our periodized greens function data.

It is useful to make one more conformal mapping; let ⇥ � 1/⇥. The result is in Fig. 2.2.

Inverse problem: obtaining G⇤(z) from G̃n

In order to perform calculations we need to solve the inverse problem, i.e. obtain a� and ��

from the finite data in G̃n. In order to cope with not only functions of the form of Greens
function but also self energies, we generalized our problem slightly.

14 Analytic Continuation

Figure 2.2: Conformal mapping for the exactG( )

Suppose we have data
fn � a0 + G̃(i⇥n)

where np is the number of poles and where 0 ⇥ n<N representing an approximate pe-
riodized self energy or Greens function at the matsubara frequencies ⇥n. Can we obtain
{a�} and {��} from {fn} ?

How many poles are in principle necessary to fit arbitrary values of fn?. First of all, there
are some symmetries to consider. Our periodized data is assumed to obey fn = (fN�1�n)⇥

z� = coth(
�

4N
z � i

⇥

4
)

Single Poles from conformal mapping:

Fit G(z�(i�n)) to P (z�)/Q(z�)

Map periodically repeated poles to single poles:
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Applied to DMFT (Iterated perturbation theory) on 
Hubbard model  

�2 �1 0 1 2

a

⇤

⇥k

�4 �2 0 2 4

b

⇤

⇥k

FIG. 2: (Color online) Spectral functions A(⇥k,⇤) at � = 25 for metal U = 2 (a) and insulator

U = 4 (b) for bare energies ⇥k = �1, 0, 1. (Dashed curves are � = 500 and � = 200 respectively.)

The corresponding Im(G�k=0(z�)) is shown in (c) and (d) including circles marking the location of

poles. The poles are located inside the unit circle in accordance with Eq. 11. Empty dots represent

a subset of the Matsubara values (z�(i⇤n)). The color scale is light for large positive and negative

values with dark colors near zero.

accuracy. This motivates using our method to compute a Green’s function to extremely high

precision in a relatively small dimensional space and to use the combination of conformal

transformation and Padé fit to infer the analytic continuation to the real axis.

8

FIG. 2: (Color online) Spectral functions A(⇥k,⇤) at � = 25 for metal U = 2 (a) and insulator

U = 4 (b) for bare energies ⇥k = �1, 0, 1. (Dashed curves are � = 500 and � = 200 respectively.)

The corresponding Im(G�k=0(z⇥)) is shown in (c) and (d) including circles marking the location of

poles. The poles are located inside the unit circle in accordance with Eq. 11. Empty dots represent

a subset of the Matsubara values (z⇥(i⇤n)). The color scale is light for large positive and negative

values with dark colors near zero.

Aimp(w) using N = 61, � = 25, and 60 significant figures. Using this we find 16 independent

complex poles that to the eye reproduces the exact spectral function. It has an integrated

rms deviation over total weight (excluding the resonance) of 4 · 10�3. The resonance has

a width of 10�8 and a normalization which is within 10�5 of the exact value. A major

reason for our success is the high precision for the Padé fit rather than a large number

of poles. Fitting a greater number of less accurate data points does not yield comparable

8

ImG(z�)

A(�k, ⇥)

U = 2 U = 4
T=W/25

25 frequencies
40 digits precision

T=W/500
501 frequencies

700 digits precision
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Formalism looking for more applications...

1. Do calculations to high precision at finite N
2. Make “numerically exact” analytic continuation
3. Take N to infinity to find full analytic Green’s 

function and spectral function

There is also a consistent functional formulation

�k(i⇥n) =
�⇥

�Gk(i⇥n)

� = ⇤({G})� Tr(G+⇥) + Tr log
�
�G�/(2⇥)

⇥
⇥ �⌅

Gives exact free energy in the non-interacting limit for any N

M.Granath, A. Sabashvili, H.U.R. Strand, S. Östlund, arXiv: 1103.3516

H.U.R. Strand, A. Sabshvili, M. Granath, B. Hellsing, S. Östlund, PRB 2011
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