High precision spectral functions from discrete imaginary time Green's functions

Mats Granath
University of Gothenburg
Sweden-Swiss meeting, Stenungsbaden 26/8 201I

Collaborators: Stellan Östlund
Bo Hellsing Hugo Strand Andro Sabashvili

Spectral function

Emission Angle (deg)
Z.X. Shen

Numerical challenge, find real frequency Green's function from Matsubara GF

$$
G_{k}(\tau)=-<T\left(c_{k}(\tau) c_{k}^{\dagger}(0)\right)>
$$

$$
G_{k}\left(i \omega_{n}\right)=\int_{0}^{\beta} d \tau e^{i \omega_{n} \tau} G_{k}(\tau)
$$

$$
A_{k}(\omega)=-\frac{1}{\pi} \operatorname{Im} G_{k}^{R}(\omega)
$$

A.-M.Tremblay

Example: non-interacting Anderson impurity

$$
\begin{gathered}
A(r=0, \omega)=\frac{1}{\pi} \frac{\sqrt{4-\omega^{2}}}{4-\omega^{2}+\epsilon^{2}} \Theta(|\omega|-2)+\frac{\epsilon}{\sqrt{4+\epsilon^{2}}} \delta\left(\omega+\sqrt{4+\epsilon^{2}}\right) \\
G\left(0, i \omega_{n}\right)=\int d \omega \frac{A(0, \omega)}{i \omega_{n}-\omega}
\end{gathered}
$$

$$
\frac{P(z)}{Q(z)}=\frac{a_{0}+a_{1} z+\ldots+a_{m-1} z^{m-1}}{1+b_{1}+\ldots+b_{m} z^{m}} \quad G\left(i \omega_{n}\right)=\frac{P\left(i \omega_{n}\right)}{Q\left(i \omega_{n}\right)}
$$

High precision self-consistent Green's function calculations

High precision calculations requires a finite basis (?)
Can we work with a finite set of imaginary frequencies?
We discretize imaginary time: the GF of the diagrammatic expansion, not the path integral directly.

Advantage: non-interacting GF and spectral function can be captured exactly.
Spectral weight conservation can be build into the formalism.

$$
\begin{gathered}
G\left(\tau-\tau^{\prime}\right)=G_{0}\left(\tau-\tau^{\prime}\right)+\int d \tau_{1} d \tau_{2} G_{0}\left(\tau-\tau_{1}\right) \Sigma\left(\tau_{1}-\tau_{2}\right) G_{0}\left(\tau_{2}-\tau^{\prime}\right)+\ldots \\
\tau_{j}=\frac{\beta}{N} j \\
G\left(\tau_{i}-\tau_{j}\right)=G_{0}\left(\tau_{i}-\tau_{j}\right)+\left(\frac{\beta}{N}\right)^{2} \sum_{l, l^{\prime}=0}^{N-1} G_{0}\left(\tau_{i}-\tau_{l}\right) \Sigma\left(\tau_{l}-\tau_{l^{\prime}}\right) G_{0}\left(\tau_{l^{\prime}}-\tau_{j}\right)+\ldots \\
\text { (ambiguity at } \left.\tau_{i}-\tau_{j}=0\right)
\end{gathered}
$$

Non-interacting GF

$$
G_{0, k}(\tau)=e^{-\tau \epsilon_{k}}\left[n_{f}\left(\epsilon_{k}\right) \theta\left(-\tau+0^{+}\right)+\left(n_{f}\left(\epsilon_{k}\right)-1\right) \theta\left(\tau-0^{+}\right)\right]
$$

$$
\tau_{j}=\frac{\beta}{N} j
$$

$$
\begin{aligned}
G_{0, k}\left(\tau_{j}\right) & =\frac{1}{\beta} \sum_{n=0}^{N-1} e^{-i \omega_{n} \tau_{j}} G_{0, k}\left(i \omega_{n}\right) \\
G_{0, k}\left(\tau_{0}\right) & =n_{f}\left(\epsilon_{k}\right)-\frac{1}{2}
\end{aligned}
$$

$$
G_{0, k}\left(i \omega_{n}\right)=\frac{\beta}{N} \sum_{j=0}^{N-1} e^{i \omega_{n} \tau_{j}} G_{0, k}\left(\tau_{j}\right)=\frac{\beta}{2 N} \operatorname{coth} \frac{\beta}{2 N}\left(i \omega_{n}-\epsilon_{k}\right)
$$

$$
\text { Periodic: } \quad i \omega_{n} \rightarrow i \omega_{n}+i \Omega_{N} \quad \Omega_{N}=\frac{2 \pi}{\beta} N
$$

Dyson equation

$$
\begin{gathered}
G_{k}\left(i \omega_{n}\right)=\left(i_{n}-\epsilon_{k}-\Sigma_{k}\left(i \omega_{n}\right)\right)^{-1} \\
\sqrt{ }
\end{gathered}
$$

$$
\begin{aligned}
& G_{k}\left(i \omega_{n}\right)=\frac{\beta}{2 N} \operatorname{Coth} \frac{\beta}{2 N}\left(i \omega_{n}-\epsilon_{k}-\Sigma_{k}\left(i \omega_{n}\right)\right) \\
& G \\
& G=G_{0}+G_{0}^{+} \Sigma G_{0}^{-}+G_{0}^{+} \Sigma G_{0} \Sigma G_{0}^{-}+\ldots
\end{aligned}
$$

Σ is 1PI diagrams of periodized Green's functions

$$
G\left(i \omega_{n}\right) \text { is periodic } G\left(i \omega_{n}\right)=G\left(i \omega_{n} \pm i \Omega_{N}\right) \text { with } \Omega_{N}=\frac{2 \pi}{\beta} N
$$

Analytic Structure/Analytic continuation

Discretize the

$$
G_{k}(z)=\int d \omega A(k, \omega) \frac{\beta}{2 N} \operatorname{Coth} \frac{\beta}{2 N}(z-\omega)
$$

$$
\text { Periodic } \Omega_{N}=\frac{2 \pi}{\beta} N
$$

Represent spectral function in terms of a (set of) generalized Lorentzians

Reduces to Lorentzian for large N :

$$
L_{\epsilon, \gamma}(\omega)=\frac{i \frac{\beta}{2 N}}{\sinh \frac{\beta}{2 N}(\omega-\epsilon+i \gamma)}-\frac{i \frac{\beta}{2 N}}{\sinh \frac{\beta}{2 N}(\omega-\epsilon-i \gamma)}
$$

$$
\frac{2 \gamma}{(\omega-\epsilon)^{2}+\gamma^{2}}
$$

Map periodically repeated poles to single poles:

$$
G(z)=\frac{\beta}{4 N} \sum_{\nu}\left[a_{\nu} \operatorname{coth} \frac{\beta}{4 N}\left(z-\epsilon_{\nu}+i \gamma_{\nu}\right)+a_{\nu}^{*} \tanh \frac{\beta}{4 N}\left(z-\epsilon_{\nu}-i \gamma_{\nu}\right)\right]
$$

$\begin{array}{c}\text { Spectral weight } \\ \text { conservation: }\end{array}$	$\frac{1}{2} \sum_{\nu}\left(a_{\nu}+a_{\nu}^{*}\right)=1$

Fit $G\left(z^{\prime}\left(i \omega_{n}\right)\right)$ to $P\left(z^{\prime}\right) / Q\left(z^{\prime}\right)$

Applied to DMFT (Iterated perturbation theory) on Hubbard model

M.Granath, A. Sabashvili, H.U.R. Strand, S. Östlund, arXiv: I I03.35I6
H.U.R. Strand, A. Sabshvili, M. Granath, B. Hellsing, S. Östlund, PRB 201 I

Formalism looking for more applications...

There is also a consistent functional formulation

$$
\begin{gathered}
\Gamma=\Phi(\{G\})-\operatorname{Tr}\left(G^{+} \Sigma\right)+\operatorname{Tr} \log \left(-G^{-} /(2 \eta)\right) \approx \beta \Omega \\
\Sigma_{k}\left(i \omega_{n}\right)=\frac{\delta \Phi}{\delta G_{k}\left(i \omega_{n}\right)}
\end{gathered}
$$

Gives exact free energy in the non-interacting limit for any N

