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FIG. 2: Anderson impurity calculation at half-filling, U = 3
and � = 30. Upper panel, ⇢(!) = �Im[1/⇡G(!)] (solid line),
bath DOS ⇢0(!) (dotted line), and sampled ⇢0 discarding con-
figurations (dashed line). Lower panel, interacting Green’s
function G(z) on the imaginary axis (solid line) compared
to CT-QMC results (crosses) using the Triqs-code [16–19],
bath Green’s function G0 (dashed line). (inset) Self-energy
⌃(!) � U/2. Model size n = 6 and 104 samples with 65%
acceptance ratio.
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FIG. 3: DMFT calculation for U = 3, T = 0, (upper left
panel) real part of ⌃(!) � U/2 (solid line) with kinks indi-
cated fitted dotted lines, (upper right panel) full view of the
Self-energy. (lower panel) interacting spectral function in the
upper complex plane (grid-surface) and on the real axis (solid
line). Model size n = 6 and 3 · 104 samples with 49% accep-
tance ratio.

(We have also studied U = 4, T = 0, converging to an
insulator, but a more sophisticated sampling procedure
will be necessary to get good statistics as the G0 DOS
becomes very narrow.)

In summary, we have presented a formalism for calcu-
lating the full analytic self energy of quantum impurity
models by using a representative distribution of exactly
solvable Anderson impurity models. The method is sim-
ple to implement and the initial studies shows that the
method can give very good results. The calculations in
this paper were done a single desktop computer over time
periods of 10-40 hours, but the formalism is well suited

for parallell computing which will be the key to consid-
ering larger n models. A natural extension is to apply
the formalism to more general models, including multi
orbital and cluster generalizations of DMFT and to cal-
culate other dynamical correlations. The motivation for
the formalism is physical, a deeper mathematical under-
standing of the validity of the approximations would be
valuable.
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The problem:

2

analytic continuation and that the method is most e�-
cient for zero temperature. Because a large stochastic
sampling is required for accurate results the calculations
can be numerically demanding. However, the samples
can be generated and addressed independently making it
ideal for parallel computing. In this paper which intro-
duces the method we will focus exclusively on the single-
impurity Anderson model with a semicircular bare den-
sity of states, and the corresponding single-orbital Hub-
bard model when considering the application to DMFT.

For the single-impurity Anderson model the basic ob-
ject of study is the imaginary time action

S = �
Z

d⌧d⌧ 0
X

�

c†�(⌧)G�1
0 (⌧ � ⌧ 0)c�(⌧ 0) (1)

� µ

Z
d⌧

X

�

c†�(⌧)c�(⌧) + U

Z
d⌧c†"(⌧)c†#(⌧)c#(⌧)c"(⌧) ,

with spin � =", #. The non-interacting impurity Green’s
function G0 describes the correlations induced by the
coupling to the surrounding non-interacting bath. In
complex frequency space G0(z) is an analytic function
with poles on the real frequency axis or a branch cut in
the thermodynamic limit. The task is to calculate the
Green’s function G�(⌧ � ⌧ 0) = �hTc�(⌧)c†�(⌧ 0)iS . Subse-
quently we will assume no magnetic order and drop the
spin index and instead of the Green’s function we can
consider the self energy ⌃ given by G�1(z) = G�1

0 (z) +
µ � ⌃(z). For the quantum impurity problem G0 cor-
responds to the bare (non-interacting) density of states
which we take to be semicircular ⇢0(!) = (2/⇡)

p
1 � !2

and let the half-bandwidth be our unit of energy.

Consider a representation of G0 in terms of a large
number of poles on the real axis G0(z) =

PM
i=1

ãi
z�bi

withP
ãi = 1, which for the purpose of doing numerical cal-

culations can be very good for a large number of poles
(104 to 105 or more). Assume that the poles and residues
are such that they can be grouped in N smaller groups of
size n (the total number of poles is thus M = Nn) such
that the total residue in each group is 1/N . (There are
many inequivalent ways of grouping the poles, we make
an unbiased choice, grouping the poles randomly.)

The self energy is given by all one particle irreducible
(1PI) diagrams in terms of the four point vertex U and
the two point vertex �µ connected by G0. [13] We rewrite

G0(z) =
1

N

NX

⌫=1

nX

j=1

a⌫
j

z � b⌫j
=

1

N

X

⌫

G⌫
0(z) , (2)

where the residues are renormalized by a factor N such
that the Green’s functions G⌫

0(z) are properly normalized
for an n-level system,

P
j a⌫

j = 1. For every diagram, we
make the following approximation exemplified by a 2nd
order diagram (here with no insertions of µ and where zp

and zq are Matsubara frequencies).

⌃(2)(z) =
U2

�2

X

zp,zq

G0(zp)G0(zq)G0(zp + zq � z) =

=
U2

�2

X

zp,zq

1

N3

X

⌫,�,⌧

G⌫
0(zp)G

�
0 (zq)G

⌧
0(zp + zq � z)

⇡ 1

N

U2

�2

X

zp,zq

X

⌫

G⌫
0(zp)G

⌫
0(zq)G

⌫
0(zp + zq � z) =

=
1

N

X

⌫

⌃(2),⌫(z) . (3)

The approximation is thus to replace cross correlations
between di↵erent Green’s functions by internal correla-
tions, giving ⌃ ⇡ 1

N

P
⌫ ⌃⌫ where ⌃⌫ is the self energy

related to G⌫
0 .

Considering also the chemical potential on the in-
teracting site µ, all 1PI diagrams include the diagram
with the vertex �µ by itself as well as all insertions
of �µ into the 1PI diagrams constructed from the
vertex U . Within the same approximation, µ acts as a
chemical potential on each of the subsystem such that
G0(z)+G2

0(z)(�µ)+ ... ⇡ 1
N

P
⌫

1
(G⌫

0 (z))�1+µ and we find

that the approximation corresponds to the expression

⌃ � µ ⇡ 1

N

NX

⌫=1

(⌃⌫ � µ) , (4)

which is the basis of the present formalism.
Importantly, ⌃⌫ contains all 1PI diagrams of G⌫

0 , it is
the exact self energy of the quantum impurity action, Eq.
1, with G0 replaced by G⌫

0 , a problem that can be mapped
to an Anderson impurity model with a single interacting
site coupled to n � 1 bath levels. The Anderson model
is formulated in terms of a Hamiltonian which can be
diagonalized numerically for small n and the self energy
calculated as

⌃⌫(z) � µ = (G⌫
0(z))�1 � (G⌫(z))�1 . (5)

Note that it is not an option to work with the sample
averaged Green’s functions instead of the self energy;
1
N

P
⌫ G⌫ is not a proper interacting Green’s functions

of 1
N

P
⌫ G⌫

0 as it does not satisfy the Dyson equation
which requires that a zero of the non-interacting Green’s
function also is a zero of the interacting Green’s function.

Now, G⌫
0 =

Pn
j=1

a⌫
j

z�b⌫j
is mapped to the Green’s func-

tion G⌫
0 = 1/(z�✏⌫0�

Pn�1
j=1

(V ⌫
j )2

z�✏⌫j
) of the Anderson model

H0 = ✏⌫0
P

� c†�c� +
Pn�1

�,j=1[V
⌫
j (c†�cj� + h.c.) + ✏⌫j c

†
j�cj�]

by solving for the parameters ✏i and Vi according to
✏⌫i : G⌫

0(! = ✏⌫i ) = 0, dG⌫
0

d! |✏i = �1/(V ⌫
i )2, and

✏⌫0 = �
P

j a⌫
j b

⌫
j . The full Hamiltonian is H = H0 �

µ
P

� c†�c� + Uc†"c
†
#c#c" and the corresponding Green’s

function G⌫(z) given by the Lehmann representation by
summing over the complete set of eigenstates. [14]
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analytic continuation and that the method is most e�-
cient for zero temperature. Because a large stochastic
sampling is required for accurate results the calculations
can be numerically demanding. However, the samples
can be generated and addressed independently making it
ideal for parallel computing. In this paper which intro-
duces the method we will focus exclusively on the single-
impurity Anderson model with a semicircular bare den-
sity of states, and the corresponding single-orbital Hub-
bard model when considering the application to DMFT.
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with spin � =", #. The non-interacting impurity Green’s
function G0 describes the correlations induced by the
coupling to the surrounding non-interacting bath. In
complex frequency space G0(z) is an analytic function
with poles on the real frequency axis or a branch cut in
the thermodynamic limit. The task is to calculate the
Green’s function G�(⌧ � ⌧ 0) = �hTc�(⌧)c†�(⌧ 0)iS . Subse-
quently we will assume no magnetic order and drop the
spin index and instead of the Green’s function we can
consider the self energy ⌃ given by G�1(z) = G�1
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Consider a representation of G0 in terms of a large
number of poles on the real axis G0(z) =

PM
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ãi
z�bi

withP
ãi = 1, which for the purpose of doing numerical cal-

culations can be very good for a large number of poles
(104 to 105 or more). Assume that the poles and residues
are such that they can be grouped in N smaller groups of
size n (the total number of poles is thus M = Nn) such
that the total residue in each group is 1/N . (There are
many inequivalent ways of grouping the poles, we make
an unbiased choice, grouping the poles randomly.)

The self energy is given by all one particle irreducible
(1PI) diagrams in terms of the four point vertex U and
the two point vertex �µ connected by G0. [13] We rewrite

G0(z) =
1

N

NX

⌫=1

nX

j=1

a⌫
j
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=
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N

X

⌫

G⌫
0(z) , (2)

where the residues are renormalized by a factor N such
that the Green’s functions G⌫

0(z) are properly normalized
for an n-level system,

P
j a⌫

j = 1. For every diagram, we
make the following approximation exemplified by a 2nd
order diagram (here with no insertions of µ and where zp

and zq are Matsubara frequencies).

⌃(2)(z) =
U2

�2

X

zp,zq

G0(zp)G0(zq)G0(zp + zq � z) =

=
U2

�2

X

zp,zq
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N3

X

⌫,�,⌧

G⌫
0(zp)G

�
0 (zq)G

⌧
0(zp + zq � z)
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N

U2

�2

X

zp,zq

X

⌫

G⌫
0(zp)G

⌫
0(zq)G

⌫
0(zp + zq � z) =

=
1

N

X

⌫

⌃(2),⌫(z) . (3)

The approximation is thus to replace cross correlations
between di↵erent Green’s functions by internal correla-
tions, giving ⌃ ⇡ 1

N

P
⌫ ⌃⌫ where ⌃⌫ is the self energy

related to G⌫
0 .

Considering also the chemical potential on the in-
teracting site µ, all 1PI diagrams include the diagram
with the vertex �µ by itself as well as all insertions
of �µ into the 1PI diagrams constructed from the
vertex U . Within the same approximation, µ acts as a
chemical potential on each of the subsystem such that
G0(z)+G2

0(z)(�µ)+ ... ⇡ 1
N

P
⌫

1
(G⌫

0 (z))�1+µ and we find

that the approximation corresponds to the expression

⌃ � µ ⇡ 1

N

NX

⌫=1

(⌃⌫ � µ) , (4)

which is the basis of the present formalism.
Importantly, ⌃⌫ contains all 1PI diagrams of G⌫

0 , it is
the exact self energy of the quantum impurity action, Eq.
1, with G0 replaced by G⌫

0 , a problem that can be mapped
to an Anderson impurity model with a single interacting
site coupled to n � 1 bath levels. The Anderson model
is formulated in terms of a Hamiltonian which can be
diagonalized numerically for small n and the self energy
calculated as

⌃⌫(z) � µ = (G⌫
0(z))�1 � (G⌫(z))�1 . (5)

Note that it is not an option to work with the sample
averaged Green’s functions instead of the self energy;
1
N

P
⌫ G⌫ is not a proper interacting Green’s functions

of 1
N

P
⌫ G⌫

0 as it does not satisfy the Dyson equation
which requires that a zero of the non-interacting Green’s
function also is a zero of the interacting Green’s function.

Now, G⌫
0 =

Pn
j=1

a⌫
j

z�b⌫j
is mapped to the Green’s func-

tion G⌫
0 = 1/(z�✏⌫0�

Pn�1
j=1

(V ⌫
j )2

z�✏⌫j
) of the Anderson model

H0 = ✏⌫0
P

� c†�c� +
Pn�1

�,j=1[V
⌫
j (c†�cj� + h.c.) + ✏⌫j c

†
j�cj�]

by solving for the parameters ✏i and Vi according to
✏⌫i : G⌫

0(! = ✏⌫i ) = 0, dG⌫
0

d! |✏i = �1/(V ⌫
i )2, and

✏⌫0 = �
P

j a⌫
j b

⌫
j . The full Hamiltonian is H = H0 �

µ
P

� c†�c� + Uc†"c
†
#c#c" and the corresponding Green’s

function G⌫(z) given by the Lehmann representation by
summing over the complete set of eigenstates. [14]

⌃(z)� µ = G0(z)�1 �G(z)�1
Or equivalently:

New (very good) method
for calculating self energy
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G0(z) =
Z

d!

2⇡

A0(w)
z � !

A0(!) = �2ImG0(! + i�) !

A0(!)

The non-interacting Green’s function is well represented by a very large number of poles: 

G0(z) ⇡
MX

i=1

ãi

z � bi
!

A0(!)

Distribution of poles

!

A0(!)
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Pn�1
j=1

(V ⌫
j )2

z�✏⌫j
) of the Anderson model

H0 = ✏⌫0
P

� c†�c� +
Pn�1

�,j=1[V
⌫
j (c†�cj� + h.c.) + ✏⌫j c

†
j�cj�]

by solving for the parameters ✏i and Vi according to
✏⌫i : G⌫

0(! = ✏⌫i ) = 0, dG⌫
0

d! |✏i = �1/(V ⌫
i )2, and

✏⌫0 = �
P

j a⌫
j b

⌫
j . The full Hamiltonian is H = H0 �

µ
P

� c†�c� + Uc†"c
†
#c#c" and the corresponding Green’s

function G⌫(z) given by the Lehmann representation by
summing over the complete set of eigenstates. [14]

Divide the poles into small groups of n=5,6, or 7 or so poles:

!

A0(!)

G0 G⌫
0

Monday, April 30, 12



The approximation: 
Replace intergroup correlations by intragroup correlations

Ex: 
2

analytic continuation and that the method is most e�-
cient for zero temperature. Because a large stochastic
sampling is required for accurate results the calculations
can be numerically demanding. However, the samples
can be generated and addressed independently making it
ideal for parallel computing. In this paper which intro-
duces the method we will focus exclusively on the single-
impurity Anderson model with a semicircular bare den-
sity of states, and the corresponding single-orbital Hub-
bard model when considering the application to DMFT.

For the single-impurity Anderson model the basic ob-
ject of study is the imaginary time action

S = �
Z

d⌧d⌧ 0
X

�

c†�(⌧)G�1
0 (⌧ � ⌧ 0)c�(⌧ 0) (1)

� µ

Z
d⌧

X

�

c†�(⌧)c�(⌧) + U

Z
d⌧c†"(⌧)c†#(⌧)c#(⌧)c"(⌧) ,

with spin � =", #. The non-interacting impurity Green’s
function G0 describes the correlations induced by the
coupling to the surrounding non-interacting bath. In
complex frequency space G0(z) is an analytic function
with poles on the real frequency axis or a branch cut in
the thermodynamic limit. The task is to calculate the
Green’s function G�(⌧ � ⌧ 0) = �hTc�(⌧)c†�(⌧ 0)iS . Subse-
quently we will assume no magnetic order and drop the
spin index and instead of the Green’s function we can
consider the self energy ⌃ given by G�1(z) = G�1

0 (z) +
µ � ⌃(z). For the quantum impurity problem G0 cor-
responds to the bare (non-interacting) density of states
which we take to be semicircular ⇢0(!) = (2/⇡)

p
1 � !2

and let the half-bandwidth be our unit of energy.

Consider a representation of G0 in terms of a large
number of poles on the real axis G0(z) =

PM
i=1

ãi
z�bi

withP
ãi = 1, which for the purpose of doing numerical cal-

culations can be very good for a large number of poles
(104 to 105 or more). Assume that the poles and residues
are such that they can be grouped in N smaller groups of
size n (the total number of poles is thus M = Nn) such
that the total residue in each group is 1/N . (There are
many inequivalent ways of grouping the poles, we make
an unbiased choice, grouping the poles randomly.)

The self energy is given by all one particle irreducible
(1PI) diagrams in terms of the four point vertex U and
the two point vertex �µ connected by G0. [13] We rewrite

G0(z) =
1

N

NX

⌫=1

nX

j=1

a⌫
j

z � b⌫j
=

1

N

X

⌫

G⌫
0(z) , (2)

where the residues are renormalized by a factor N such
that the Green’s functions G⌫

0(z) are properly normalized
for an n-level system,

P
j a⌫

j = 1. For every diagram, we
make the following approximation exemplified by a 2nd
order diagram (here with no insertions of µ and where zp

and zq are Matsubara frequencies).

⌃(2)(z) =
U2

�2

X

zp,zq

G0(zp)G0(zq)G0(zp + zq � z) =

=
U2

�2

X

zp,zq

1

N3

X

⌫,�,⌧

G⌫
0(zp)G

�
0 (zq)G

⌧
0(zp + zq � z)

⇡ 1

N

U2

�2

X

zp,zq

X

⌫

G⌫
0(zp)G

⌫
0(zq)G

⌫
0(zp + zq � z) =

=
1

N

X

⌫

⌃(2),⌫(z) . (3)

The approximation is thus to replace cross correlations
between di↵erent Green’s functions by internal correla-
tions, giving ⌃ ⇡ 1

N

P
⌫ ⌃⌫ where ⌃⌫ is the self energy

related to G⌫
0 .

Considering also the chemical potential on the in-
teracting site µ, all 1PI diagrams include the diagram
with the vertex �µ by itself as well as all insertions
of �µ into the 1PI diagrams constructed from the
vertex U . Within the same approximation, µ acts as a
chemical potential on each of the subsystem such that
G0(z)+G2

0(z)(�µ)+ ... ⇡ 1
N

P
⌫

1
(G⌫

0 (z))�1+µ and we find

that the approximation corresponds to the expression

⌃ � µ ⇡ 1

N

NX

⌫=1

(⌃⌫ � µ) , (4)

which is the basis of the present formalism.
Importantly, ⌃⌫ contains all 1PI diagrams of G⌫

0 , it is
the exact self energy of the quantum impurity action, Eq.
1, with G0 replaced by G⌫

0 , a problem that can be mapped
to an Anderson impurity model with a single interacting
site coupled to n � 1 bath levels. The Anderson model
is formulated in terms of a Hamiltonian which can be
diagonalized numerically for small n and the self energy
calculated as

⌃⌫(z) � µ = (G⌫
0(z))�1 � (G⌫(z))�1 . (5)

Note that it is not an option to work with the sample
averaged Green’s functions instead of the self energy;
1
N

P
⌫ G⌫ is not a proper interacting Green’s functions

of 1
N

P
⌫ G⌫

0 as it does not satisfy the Dyson equation
which requires that a zero of the non-interacting Green’s
function also is a zero of the interacting Green’s function.

Now, G⌫
0 =

Pn
j=1

a⌫
j

z�b⌫j
is mapped to the Green’s func-

tion G⌫
0 = 1/(z�✏⌫0�

Pn�1
j=1

(V ⌫
j )2

z�✏⌫j
) of the Anderson model

H0 = ✏⌫0
P

� c†�c� +
Pn�1

�,j=1[V
⌫
j (c†�cj� + h.c.) + ✏⌫j c

†
j�cj�]

by solving for the parameters ✏i and Vi according to
✏⌫i : G⌫

0(! = ✏⌫i ) = 0, dG⌫
0

d! |✏i = �1/(V ⌫
i )2, and

✏⌫0 = �
P

j a⌫
j b

⌫
j . The full Hamiltonian is H = H0 �

µ
P

� c†�c� + Uc†"c
†
#c#c" and the corresponding Green’s

function G⌫(z) given by the Lehmann representation by
summing over the complete set of eigenstates. [14]

G0

G0

G0
⇡ 1

N

P
⌫

h
G⌫

0

G⌫
0

G⌫
0

i

⌃ ⇡ 1
N

X

⌫

⌃⌫
Thus: To all orders
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2

analytic continuation and that the method is most e�-
cient for zero temperature. Because a large stochastic
sampling is required for accurate results the calculations
can be numerically demanding. However, the samples
can be generated and addressed independently making it
ideal for parallel computing. In this paper which intro-
duces the method we will focus exclusively on the single-
impurity Anderson model with a semicircular bare den-
sity of states, and the corresponding single-orbital Hub-
bard model when considering the application to DMFT.

For the single-impurity Anderson model the basic ob-
ject of study is the imaginary time action

S = �
Z

d⌧d⌧ 0
X

�

c†�(⌧)G�1
0 (⌧ � ⌧ 0)c�(⌧ 0) (1)

� µ

Z
d⌧

X

�

c†�(⌧)c�(⌧) + U

Z
d⌧c†"(⌧)c†#(⌧)c#(⌧)c"(⌧) ,

with spin � =", #. The non-interacting impurity Green’s
function G0 describes the correlations induced by the
coupling to the surrounding non-interacting bath. In
complex frequency space G0(z) is an analytic function
with poles on the real frequency axis or a branch cut in
the thermodynamic limit. The task is to calculate the
Green’s function G�(⌧ � ⌧ 0) = �hTc�(⌧)c†�(⌧ 0)iS . Subse-
quently we will assume no magnetic order and drop the
spin index and instead of the Green’s function we can
consider the self energy ⌃ given by G�1(z) = G�1

0 (z) +
µ � ⌃(z). For the quantum impurity problem G0 cor-
responds to the bare (non-interacting) density of states
which we take to be semicircular ⇢0(!) = (2/⇡)

p
1 � !2

and let the half-bandwidth be our unit of energy.

Consider a representation of G0 in terms of a large
number of poles on the real axis G0(z) =

PM
i=1

ãi
z�bi

withP
ãi = 1, which for the purpose of doing numerical cal-

culations can be very good for a large number of poles
(104 to 105 or more). Assume that the poles and residues
are such that they can be grouped in N smaller groups of
size n (the total number of poles is thus M = Nn) such
that the total residue in each group is 1/N . (There are
many inequivalent ways of grouping the poles, we make
an unbiased choice, grouping the poles randomly.)

The self energy is given by all one particle irreducible
(1PI) diagrams in terms of the four point vertex U and
the two point vertex �µ connected by G0. [13] We rewrite

G0(z) =
1

N

NX

⌫=1

nX

j=1

a⌫
j

z � b⌫j
=

1

N

X

⌫

G⌫
0(z) , (2)

where the residues are renormalized by a factor N such
that the Green’s functions G⌫

0(z) are properly normalized
for an n-level system,

P
j a⌫

j = 1. For every diagram, we
make the following approximation exemplified by a 2nd
order diagram (here with no insertions of µ and where zp

and zq are Matsubara frequencies).

⌃(2)(z) =
U2

�2

X

zp,zq

G0(zp)G0(zq)G0(zp + zq � z) =

=
U2

�2

X

zp,zq

1

N3

X

⌫,�,⌧

G⌫
0(zp)G

�
0 (zq)G

⌧
0(zp + zq � z)

⇡ 1

N

U2

�2

X

zp,zq

X

⌫

G⌫
0(zp)G

⌫
0(zq)G

⌫
0(zp + zq � z) =

=
1

N

X

⌫

⌃(2),⌫(z) . (3)

The approximation is thus to replace cross correlations
between di↵erent Green’s functions by internal correla-
tions, giving ⌃ ⇡ 1

N

P
⌫ ⌃⌫ where ⌃⌫ is the self energy

related to G⌫
0 .

Considering also the chemical potential on the in-
teracting site µ, all 1PI diagrams include the diagram
with the vertex �µ by itself as well as all insertions
of �µ into the 1PI diagrams constructed from the
vertex U . Within the same approximation, µ acts as a
chemical potential on each of the subsystem such that
G0(z)+G2

0(z)(�µ)+ ... ⇡ 1
N

P
⌫

1
(G⌫

0 (z))�1+µ and we find

that the approximation corresponds to the expression

⌃ � µ ⇡ 1

N

NX

⌫=1

(⌃⌫ � µ) , (4)

which is the basis of the present formalism.
Importantly, ⌃⌫ contains all 1PI diagrams of G⌫

0 , it is
the exact self energy of the quantum impurity action, Eq.
1, with G0 replaced by G⌫

0 , a problem that can be mapped
to an Anderson impurity model with a single interacting
site coupled to n � 1 bath levels. The Anderson model
is formulated in terms of a Hamiltonian which can be
diagonalized numerically for small n and the self energy
calculated as

⌃⌫(z) � µ = (G⌫
0(z))�1 � (G⌫(z))�1 . (5)

Note that it is not an option to work with the sample
averaged Green’s functions instead of the self energy;
1
N

P
⌫ G⌫ is not a proper interacting Green’s functions

of 1
N

P
⌫ G⌫

0 as it does not satisfy the Dyson equation
which requires that a zero of the non-interacting Green’s
function also is a zero of the interacting Green’s function.

Now, G⌫
0 =

Pn
j=1

a⌫
j

z�b⌫j
is mapped to the Green’s func-

tion G⌫
0 = 1/(z�✏⌫0�

Pn�1
j=1

(V ⌫
j )2

z�✏⌫j
) of the Anderson model

H0 = ✏⌫0
P

� c†�c� +
Pn�1

�,j=1[V
⌫
j (c†�cj� + h.c.) + ✏⌫j c

†
j�cj�]

by solving for the parameters ✏i and Vi according to
✏⌫i : G⌫

0(! = ✏⌫i ) = 0, dG⌫
0

d! |✏i = �1/(V ⌫
i )2, and

✏⌫0 = �
P

j a⌫
j b

⌫
j . The full Hamiltonian is H = H0 �

µ
P

� c†�c� + Uc†"c
†
#c#c" and the corresponding Green’s

function G⌫(z) given by the Lehmann representation by
summing over the complete set of eigenstates. [14]

⌃

⌫
is the exact self energy of G⌫

0 with interaction U

2

analytic continuation and that the method is most e�-
cient for zero temperature. Because a large stochastic
sampling is required for accurate results the calculations
can be numerically demanding. However, the samples
can be generated and addressed independently making it
ideal for parallel computing. In this paper which intro-
duces the method we will focus exclusively on the single-
impurity Anderson model with a semicircular bare den-
sity of states, and the corresponding single-orbital Hub-
bard model when considering the application to DMFT.

For the single-impurity Anderson model the basic ob-
ject of study is the imaginary time action

S = �
Z

d⌧d⌧ 0
X

�

c†�(⌧)G�1
0 (⌧ � ⌧ 0)c�(⌧ 0) (1)

� µ

Z
d⌧

X

�

c†�(⌧)c�(⌧) + U

Z
d⌧c†"(⌧)c†#(⌧)c#(⌧)c"(⌧) ,

with spin � =", #. The non-interacting impurity Green’s
function G0 describes the correlations induced by the
coupling to the surrounding non-interacting bath. In
complex frequency space G0(z) is an analytic function
with poles on the real frequency axis or a branch cut in
the thermodynamic limit. The task is to calculate the
Green’s function G�(⌧ � ⌧ 0) = �hTc�(⌧)c†�(⌧ 0)iS . Subse-
quently we will assume no magnetic order and drop the
spin index and instead of the Green’s function we can
consider the self energy ⌃ given by G�1(z) = G�1

0 (z) +
µ � ⌃(z). For the quantum impurity problem G0 cor-
responds to the bare (non-interacting) density of states
which we take to be semicircular ⇢0(!) = (2/⇡)

p
1 � !2

and let the half-bandwidth be our unit of energy.

Consider a representation of G0 in terms of a large
number of poles on the real axis G0(z) =

PM
i=1

ãi
z�bi

withP
ãi = 1, which for the purpose of doing numerical cal-

culations can be very good for a large number of poles
(104 to 105 or more). Assume that the poles and residues
are such that they can be grouped in N smaller groups of
size n (the total number of poles is thus M = Nn) such
that the total residue in each group is 1/N . (There are
many inequivalent ways of grouping the poles, we make
an unbiased choice, grouping the poles randomly.)

The self energy is given by all one particle irreducible
(1PI) diagrams in terms of the four point vertex U and
the two point vertex �µ connected by G0. [13] We rewrite

G0(z) =
1

N

NX

⌫=1

nX

j=1

a⌫
j

z � b⌫j
=

1

N

X

⌫

G⌫
0(z) , (2)

where the residues are renormalized by a factor N such
that the Green’s functions G⌫

0(z) are properly normalized
for an n-level system,

P
j a⌫

j = 1. For every diagram, we
make the following approximation exemplified by a 2nd
order diagram (here with no insertions of µ and where zp

and zq are Matsubara frequencies).

⌃(2)(z) =
U2

�2

X

zp,zq

G0(zp)G0(zq)G0(zp + zq � z) =

=
U2

�2

X

zp,zq

1

N3

X

⌫,�,⌧

G⌫
0(zp)G

�
0 (zq)G

⌧
0(zp + zq � z)

⇡ 1

N

U2

�2

X

zp,zq

X

⌫

G⌫
0(zp)G

⌫
0(zq)G

⌫
0(zp + zq � z) =

=
1

N

X

⌫

⌃(2),⌫(z) . (3)

The approximation is thus to replace cross correlations
between di↵erent Green’s functions by internal correla-
tions, giving ⌃ ⇡ 1

N

P
⌫ ⌃⌫ where ⌃⌫ is the self energy

related to G⌫
0 .

Considering also the chemical potential on the in-
teracting site µ, all 1PI diagrams include the diagram
with the vertex �µ by itself as well as all insertions
of �µ into the 1PI diagrams constructed from the
vertex U . Within the same approximation, µ acts as a
chemical potential on each of the subsystem such that
G0(z)+G2

0(z)(�µ)+ ... ⇡ 1
N

P
⌫

1
(G⌫

0 (z))�1+µ and we find

that the approximation corresponds to the expression

⌃ � µ ⇡ 1

N

NX

⌫=1

(⌃⌫ � µ) , (4)

which is the basis of the present formalism.
Importantly, ⌃⌫ contains all 1PI diagrams of G⌫

0 , it is
the exact self energy of the quantum impurity action, Eq.
1, with G0 replaced by G⌫

0 , a problem that can be mapped
to an Anderson impurity model with a single interacting
site coupled to n � 1 bath levels. The Anderson model
is formulated in terms of a Hamiltonian which can be
diagonalized numerically for small n and the self energy
calculated as

⌃⌫(z) � µ = (G⌫
0(z))�1 � (G⌫(z))�1 . (5)

Note that it is not an option to work with the sample
averaged Green’s functions instead of the self energy;
1
N

P
⌫ G⌫ is not a proper interacting Green’s functions

of 1
N

P
⌫ G⌫

0 as it does not satisfy the Dyson equation
which requires that a zero of the non-interacting Green’s
function also is a zero of the interacting Green’s function.

Now, G⌫
0 =

Pn
j=1

a⌫
j

z�b⌫j
is mapped to the Green’s func-

tion G⌫
0 = 1/(z�✏⌫0�

Pn�1
j=1

(V ⌫
j )2

z�✏⌫j
) of the Anderson model

H0 = ✏⌫0
P

� c†�c� +
Pn�1

�,j=1[V
⌫
j (c†�cj� + h.c.) + ✏⌫j c

†
j�cj�]

by solving for the parameters ✏i and Vi according to
✏⌫i : G⌫

0(! = ✏⌫i ) = 0, dG⌫
0

d! |✏i = �1/(V ⌫
i )2, and

✏⌫0 = �
P

j a⌫
j b

⌫
j . The full Hamiltonian is H = H0 �

µ
P

� c†�c� + Uc†"c
†
#c#c" and the corresponding Green’s

function G⌫(z) given by the Lehmann representation by
summing over the complete set of eigenstates. [14]

Map to Anderson model

2

analytic continuation and that the method is most e�-
cient for zero temperature. Because a large stochastic
sampling is required for accurate results the calculations
can be numerically demanding. However, the samples
can be generated and addressed independently making it
ideal for parallel computing. In this paper which intro-
duces the method we will focus exclusively on the single-
impurity Anderson model with a semicircular bare den-
sity of states, and the corresponding single-orbital Hub-
bard model when considering the application to DMFT.

For the single-impurity Anderson model the basic ob-
ject of study is the imaginary time action

S = �
Z

d⌧d⌧ 0
X

�

c†�(⌧)G�1
0 (⌧ � ⌧ 0)c�(⌧ 0) (1)

� µ

Z
d⌧

X

�

c†�(⌧)c�(⌧) + U

Z
d⌧c†"(⌧)c†#(⌧)c#(⌧)c"(⌧) ,

with spin � =", #. The non-interacting impurity Green’s
function G0 describes the correlations induced by the
coupling to the surrounding non-interacting bath. In
complex frequency space G0(z) is an analytic function
with poles on the real frequency axis or a branch cut in
the thermodynamic limit. The task is to calculate the
Green’s function G�(⌧ � ⌧ 0) = �hTc�(⌧)c†�(⌧ 0)iS . Subse-
quently we will assume no magnetic order and drop the
spin index and instead of the Green’s function we can
consider the self energy ⌃ given by G�1(z) = G�1

0 (z) +
µ � ⌃(z). For the quantum impurity problem G0 cor-
responds to the bare (non-interacting) density of states
which we take to be semicircular ⇢0(!) = (2/⇡)

p
1 � !2

and let the half-bandwidth be our unit of energy.

Consider a representation of G0 in terms of a large
number of poles on the real axis G0(z) =

PM
i=1

ãi
z�bi

withP
ãi = 1, which for the purpose of doing numerical cal-

culations can be very good for a large number of poles
(104 to 105 or more). Assume that the poles and residues
are such that they can be grouped in N smaller groups of
size n (the total number of poles is thus M = Nn) such
that the total residue in each group is 1/N . (There are
many inequivalent ways of grouping the poles, we make
an unbiased choice, grouping the poles randomly.)

The self energy is given by all one particle irreducible
(1PI) diagrams in terms of the four point vertex U and
the two point vertex �µ connected by G0. [13] We rewrite

G0(z) =
1

N

NX

⌫=1

nX

j=1

a⌫
j

z � b⌫j
=

1

N

X

⌫

G⌫
0(z) , (2)

where the residues are renormalized by a factor N such
that the Green’s functions G⌫

0(z) are properly normalized
for an n-level system,

P
j a⌫

j = 1. For every diagram, we
make the following approximation exemplified by a 2nd
order diagram (here with no insertions of µ and where zp

and zq are Matsubara frequencies).

⌃(2)(z) =
U2

�2

X

zp,zq

G0(zp)G0(zq)G0(zp + zq � z) =

=
U2

�2

X

zp,zq

1

N3

X

⌫,�,⌧

G⌫
0(zp)G

�
0 (zq)G

⌧
0(zp + zq � z)

⇡ 1

N

U2

�2

X

zp,zq

X

⌫

G⌫
0(zp)G

⌫
0(zq)G

⌫
0(zp + zq � z) =

=
1

N

X

⌫

⌃(2),⌫(z) . (3)

The approximation is thus to replace cross correlations
between di↵erent Green’s functions by internal correla-
tions, giving ⌃ ⇡ 1

N

P
⌫ ⌃⌫ where ⌃⌫ is the self energy

related to G⌫
0 .

Considering also the chemical potential on the in-
teracting site µ, all 1PI diagrams include the diagram
with the vertex �µ by itself as well as all insertions
of �µ into the 1PI diagrams constructed from the
vertex U . Within the same approximation, µ acts as a
chemical potential on each of the subsystem such that
G0(z)+G2

0(z)(�µ)+ ... ⇡ 1
N

P
⌫

1
(G⌫

0 (z))�1+µ and we find

that the approximation corresponds to the expression

⌃ � µ ⇡ 1

N

NX

⌫=1

(⌃⌫ � µ) , (4)

which is the basis of the present formalism.
Importantly, ⌃⌫ contains all 1PI diagrams of G⌫

0 , it is
the exact self energy of the quantum impurity action, Eq.
1, with G0 replaced by G⌫

0 , a problem that can be mapped
to an Anderson impurity model with a single interacting
site coupled to n � 1 bath levels. The Anderson model
is formulated in terms of a Hamiltonian which can be
diagonalized numerically for small n and the self energy
calculated as

⌃⌫(z) � µ = (G⌫
0(z))�1 � (G⌫(z))�1 . (5)

Note that it is not an option to work with the sample
averaged Green’s functions instead of the self energy;
1
N

P
⌫ G⌫ is not a proper interacting Green’s functions

of 1
N

P
⌫ G⌫

0 as it does not satisfy the Dyson equation
which requires that a zero of the non-interacting Green’s
function also is a zero of the interacting Green’s function.

Now, G⌫
0 =

Pn
j=1

a⌫
j

z�b⌫j
is mapped to the Green’s func-

tion G⌫
0 = 1/(z�✏⌫0�

Pn�1
j=1

(V ⌫
j )2

z�✏⌫j
) of the Anderson model

H0 = ✏⌫0
P

� c†�c� +
Pn�1

�,j=1[V
⌫
j (c†�cj� + h.c.) + ✏⌫j c

†
j�cj�]

by solving for the parameters ✏i and Vi according to
✏⌫i : G⌫

0(! = ✏⌫i ) = 0, dG⌫
0

d! |✏i = �1/(V ⌫
i )2, and

✏⌫0 = �
P

j a⌫
j b

⌫
j . The full Hamiltonian is H = H0 �

µ
P

� c†�c� + Uc†"c
†
#c#c" and the corresponding Green’s

function G⌫(z) given by the Lehmann representation by
summing over the complete set of eigenstates. [14]
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analytic continuation and that the method is most e�-
cient for zero temperature. Because a large stochastic
sampling is required for accurate results the calculations
can be numerically demanding. However, the samples
can be generated and addressed independently making it
ideal for parallel computing. In this paper which intro-
duces the method we will focus exclusively on the single-
impurity Anderson model with a semicircular bare den-
sity of states, and the corresponding single-orbital Hub-
bard model when considering the application to DMFT.

For the single-impurity Anderson model the basic ob-
ject of study is the imaginary time action

S = �
Z

d⌧d⌧ 0
X

�

c†�(⌧)G�1
0 (⌧ � ⌧ 0)c�(⌧ 0) (1)

� µ

Z
d⌧

X

�

c†�(⌧)c�(⌧) + U

Z
d⌧c†"(⌧)c†#(⌧)c#(⌧)c"(⌧) ,

with spin � =", #. The non-interacting impurity Green’s
function G0 describes the correlations induced by the
coupling to the surrounding non-interacting bath. In
complex frequency space G0(z) is an analytic function
with poles on the real frequency axis or a branch cut in
the thermodynamic limit. The task is to calculate the
Green’s function G�(⌧ � ⌧ 0) = �hTc�(⌧)c†�(⌧ 0)iS . Subse-
quently we will assume no magnetic order and drop the
spin index and instead of the Green’s function we can
consider the self energy ⌃ given by G�1(z) = G�1

0 (z) +
µ � ⌃(z). For the quantum impurity problem G0 cor-
responds to the bare (non-interacting) density of states
which we take to be semicircular ⇢0(!) = (2/⇡)

p
1 � !2

and let the half-bandwidth be our unit of energy.

Consider a representation of G0 in terms of a large
number of poles on the real axis G0(z) =

PM
i=1

ãi
z�bi

withP
ãi = 1, which for the purpose of doing numerical cal-

culations can be very good for a large number of poles
(104 to 105 or more). Assume that the poles and residues
are such that they can be grouped in N smaller groups of
size n (the total number of poles is thus M = Nn) such
that the total residue in each group is 1/N . (There are
many inequivalent ways of grouping the poles, we make
an unbiased choice, grouping the poles randomly.)

The self energy is given by all one particle irreducible
(1PI) diagrams in terms of the four point vertex U and
the two point vertex �µ connected by G0. [13] We rewrite

G0(z) =
1

N

NX

⌫=1

nX

j=1

a⌫
j

z � b⌫j
=

1

N

X

⌫

G⌫
0(z) , (2)

where the residues are renormalized by a factor N such
that the Green’s functions G⌫

0(z) are properly normalized
for an n-level system,

P
j a⌫

j = 1. For every diagram, we
make the following approximation exemplified by a 2nd
order diagram (here with no insertions of µ and where zp

and zq are Matsubara frequencies).

⌃(2)(z) =
U2

�2

X

zp,zq

G0(zp)G0(zq)G0(zp + zq � z) =

=
U2

�2

X

zp,zq

1

N3

X

⌫,�,⌧

G⌫
0(zp)G

�
0 (zq)G

⌧
0(zp + zq � z)

⇡ 1

N

U2

�2

X

zp,zq

X

⌫

G⌫
0(zp)G

⌫
0(zq)G

⌫
0(zp + zq � z) =

=
1

N

X

⌫

⌃(2),⌫(z) . (3)

The approximation is thus to replace cross correlations
between di↵erent Green’s functions by internal correla-
tions, giving ⌃ ⇡ 1

N

P
⌫ ⌃⌫ where ⌃⌫ is the self energy

related to G⌫
0 .

Considering also the chemical potential on the in-
teracting site µ, all 1PI diagrams include the diagram
with the vertex �µ by itself as well as all insertions
of �µ into the 1PI diagrams constructed from the
vertex U . Within the same approximation, µ acts as a
chemical potential on each of the subsystem such that
G0(z)+G2

0(z)(�µ)+ ... ⇡ 1
N

P
⌫

1
(G⌫

0 (z))�1+µ and we find

that the approximation corresponds to the expression

⌃ � µ ⇡ 1

N

NX

⌫=1

(⌃⌫ � µ) , (4)

which is the basis of the present formalism.
Importantly, ⌃⌫ contains all 1PI diagrams of G⌫

0 , it is
the exact self energy of the quantum impurity action, Eq.
1, with G0 replaced by G⌫

0 , a problem that can be mapped
to an Anderson impurity model with a single interacting
site coupled to n � 1 bath levels. The Anderson model
is formulated in terms of a Hamiltonian which can be
diagonalized numerically for small n and the self energy
calculated as

⌃⌫(z) � µ = (G⌫
0(z))�1 � (G⌫(z))�1 . (5)

Note that it is not an option to work with the sample
averaged Green’s functions instead of the self energy;
1
N

P
⌫ G⌫ is not a proper interacting Green’s functions

of 1
N

P
⌫ G⌫

0 as it does not satisfy the Dyson equation
which requires that a zero of the non-interacting Green’s
function also is a zero of the interacting Green’s function.

Now, G⌫
0 =

Pn
j=1

a⌫
j

z�b⌫j
is mapped to the Green’s func-

tion G⌫
0 = 1/(z�✏⌫0�

Pn�1
j=1

(V ⌫
j )2

z�✏⌫j
) of the Anderson model

H0 = ✏⌫0
P

� c†�c� +
Pn�1

�,j=1[V
⌫
j (c†�cj� + h.c.) + ✏⌫j c

†
j�cj�]

by solving for the parameters ✏i and Vi according to
✏⌫i : G⌫

0(! = ✏⌫i ) = 0, dG⌫
0

d! |✏i = �1/(V ⌫
i )2, and

✏⌫0 = �
P

j a⌫
j b

⌫
j . The full Hamiltonian is H = H0 �

µ
P

� c†�c� + Uc†"c
†
#c#c" and the corresponding Green’s

function G⌫(z) given by the Lehmann representation by
summing over the complete set of eigenstates. [14]

H = H0+

⌃⌫(z)� µ = (G⌫
0(z))�1 � (G⌫(z))�1

Sample average:

⌃ ⇡ 1
N

X

⌫

⌃⌫

This step is done by Exact diagonalization 
(same as in standard ED-DMFT formalism)

Caffarel and Krauth, PRL 1994
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It works surprisingly well

3

The n-level systems is derived from a representation of
the full G0 in terms of a large number of poles grouped
into sets of poles with normalized residues, Eq. 2. An ex-
act representation of G0(z) is a distribution of poles given
by the spectral function A0(!) = � 1

⇡ Im[G0(w+i0+)] and
in practice we will use this as a probability distribution
for generating sequences of n random pole locations with
random relative residues. (Other sampling procedures
are conceivable.) A large ensemble of such groups will
give a good representation of G0. However, in order to
generating physically relevant self energies the individual
n-level systems must be representative of the full system
in the sense that the ground state particle number of the
interacting and non-interacting systems coincide, and we
discard configurations that fail this criterion. (This also
means that the sampling will not be a completely faithful,
as seen in Fig. 2.)

The suggested operational procedure for a particle-hole
symmetric system is:
• Use A0(!) as a probability distribution for generating
N sets of n-poles, with arbitrary but normalized residues,
the Green’s functions G⌫

0 , ⌫ = 1, ..., N .
• For each ⌫ check that the ground state of the interacting
Hamiltonian has the same particle number as the non-
interacting. If it does not, discard the configuration ⌫.
(This acceptance rule is used also for small but finite
temperature.) Calculate the self energy for each ⌫ by
mapping the problem to a Hamiltonian and using Eq 5.
• Add up the self energy ⌃ = 1

N

P
⌫ ⌃⌫

When applied to DMFT G0 is calculated from the
DMFT equations for the local Green’s function GL

GL(z) =
R

d!0

2⇡
⇢0(!

0)
z�w0+µ�⌃(z) and G�1

0 (z) = G�1
L (z) +

⌃(z)�µ which follows from integrating out all degrees of
freedom except those of one single (impurity) site. Given
G0 the impurity problem is solved for the self-energy ⌃
which gives a closed set of equations that are solved self-
consistently.

Away from half filling the standard formalism is poorly
suited for the sampling, the particle number of G0 and
GL may be very di↵erent and the spectral function of
G0 very non-uniform. We will use a formally equivalent
expression, defining ⌃̃(z) = ⌃(z)�⌃0 where ⌃0 is a real
constant. In terms of this we write

GL(z) =
1

(G̃0(z))�1 � ⌃̃(z)
(6)

where G̃�1
0 (z) = G�1

0 (z) + µ � ⌃0 and choose ⌃0 such
that

R
d! Im[G̃0(!)]nF (!) =

R
d! Im[GL(!)]nF (!), the

two Green’s functions give the same occupation. Thus
starting each step of the DMFT iteration we would solve
for ⌃0 by fitting the particle numbers, use ⌃0 as the
e↵ective chemical potential for the n-level systems and
the spectral function of G̃0 as probability distribution.
(For half filling ⌃0 = µ = u/2 and this step is triv-
ial.) For the quantum impurity model we work with
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FIG. 1: DMFT real frequency self-energy ⌃(!) (solid line)
for U=1, T=0, at and away from half-filling, µ = 0.5 and
µ = 0.75 respectively, corresponding NRG results (dashed
line) from Grete et al., Ref.[10] Model size n = 6 and 2 · 104

samples with acceptance ratios 89% and 81%.

G = 1/((G0,bare)�1+µ�⌃) instead of GL and choose ⌃0

such that G and G̃0 = 1/(G�1
0 + µ � ⌃0) have the same

particle number. Here we need to converge ⌃0, because
⌃ enters into G and the particle numbers of G and G̃
should be same for the best sampling.

We have done DMFT calculations for U = 1, T = 0,
with µ = 0.5 (half filling) and µ = 0.75 to compare with
published real frequency NRG [10] results for the self
energy, see Fig. 1. For the system away from half filling
we use a sampling where the particle number of the non-
interacting samples are free to vary between 0 and 2n (in
units of 2) guided by the probability distribution. The
results are in strikingly good agreement considering that
there are no free parameters in the formalism.

We also present two calculations for U = 3. Figure
2 is a finite temperature calculation at � = 30 (T =
1/30) for the Anderson impurity model. We find good
agreement with continous-time quantum Monte Carlo
calculations for the impurity Green’s function G(z) =
1/(G�1

0,bare(z) + µ � ⌃(z)) on the Matsubara frequencies
z = i!n = i⇡� (2n + 1). The maximum error for n = 6

is 4%. This good agreement with the CT-QMC Mat-
subara data is very encouraging as there is no a priori
reason to expect that the real frequency results would
be any further removed from the (unknown) exact form
of the self energy and interacting Green’s function. In-
terestingly, the real frequency density of states is quite
di↵erent from that deduced from MAXENT based on the
CT-QMC data.[15] The central (Kondo) peak is similar
but the Hubbard bands are much more distinct.

As a comparison we also show the T = 0, U = 3 DMFT
solution in Figure 3, where the central peak has nar-
rowed and the Hubbard bands are more centered near
U/2. Here we also show that the method is sophisticated
enough to produce fine structure in the self energy, corre-
sponding to kinks in the quasiparticle dispersion. [9, 10]

No free parameters

NRG from Grete et al. PRB 2011 

T=0, U=1

DMFT, 
Semicircular DOS

n=6

Self energies compared to Numerical renormalization group:

2 · 104 samples
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FIG. 2: Anderson impurity calculation at half-filling, U = 3
and � = 30. Upper panel, ⇢(!) = �Im[1/⇡G(!)] (solid line),
bath DOS ⇢0(!) (dotted line), and sampled ⇢0 discarding con-
figurations (dashed line). Lower panel, interacting Green’s
function G(z) on the imaginary axis (solid line) compared
to CT-QMC results (crosses) using the Triqs-code [16–19],
bath Green’s function G0 (dashed line). (inset) Self-energy
⌃(!) � U/2. Model size n = 6 and 104 samples with 65%
acceptance ratio.
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FIG. 3: DMFT calculation for U = 3, T = 0, (upper left
panel) real part of ⌃(!) � U/2 (solid line) with kinks indi-
cated fitted dotted lines, (upper right panel) full view of the
Self-energy. (lower panel) interacting spectral function in the
upper complex plane (grid-surface) and on the real axis (solid
line). Model size n = 6 and 3 · 104 samples with 49% accep-
tance ratio.

(We have also studied U = 4, T = 0, converging to an
insulator, but a more sophisticated sampling procedure
will be necessary to get good statistics as the G0 DOS
becomes very narrow.)

In summary, we have presented a formalism for calcu-
lating the full analytic self energy of quantum impurity
models by using a representative distribution of exactly
solvable Anderson impurity models. The method is sim-
ple to implement and the initial studies shows that the
method can give very good results. The calculations in
this paper were done a single desktop computer over time
periods of 10-40 hours, but the formalism is well suited

for parallell computing which will be the key to consid-
ering larger n models. A natural extension is to apply
the formalism to more general models, including multi
orbital and cluster generalizations of DMFT and to cal-
culate other dynamical correlations. The motivation for
the formalism is physical, a deeper mathematical under-
standing of the validity of the approximations would be
valuable.
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Fig. 3: (Color online) The contribution of different diagrams to
the superperturbation result compared to the exact solution
(open circles), for a single bath site. The paramters are
otherwise the same as in fig. 2. Diagram a) yields by far the
largest correction (upward triangles) to the initial solution
obtained from ED (filled circles).

∆(n) which better represents the tail of the hybridization
function and generally leads to worse results.
The superperturbation results are compared to those

of a numerically exact continuous-time quantum Monte
Carlo (CTQMC) calculation. One can see that while the
expansion around the atomic limit lacks accuracy, a dras-
tic improvement occurs for a single bath site, although the
difference between∆(1) and∆ is still significant. For n> 1,
the results are essentially converged. We find qualitatively
the same behavior for a wide-range of U values. The fast
convergence w.r.t. the number of bath sites significantly
reduces the computational effort compared to CTQMC
calculations.
In the figure we have plotted the results obtained

from summing up skeleton diagrams. The use of skeleton
diagrams is theoretically relevant since in this case the
result is conserving in the Baym-Kadanoff sense [16]. The
results obtained from the first Dyson iteration or from
the lowest-order approximation, i.e. Gf =Gf0 +G

f
0Σ
fGf0 ,

however, achieve similar quality of approximation (not
shown here).
Let us now investigate the role of the different diagrams

in the perturbation expansion. To this end, we have
plotted the results for the same parameters as in the
previous figure, for different combinations of the diagrams
shown in fig. 3. We have used only a single bath site,
for which the exact solution (open circles) and the initial
solution obtained by ED (filled circles) differ substantially.
One can clearly see that diagram a) yields by far the
largest correction to the initial solution. The value on the
first Matsubara frequency is almost exactly reproduced.
This might be expected, since ∆(1) is identical to ∆ on the
first Matsubara frequency. The largest deviations occur for
the second and third frequency. We have zoomed into this
region in the inset. One can see that all diagrams give a
correction in the right direction, whereby the correction
by diagram c) is negligible. From fig. 4 it is obvious
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Fig. 4: (Color online) Comparison of the maximum-entropy
density of states obtained by superperturbation for no (∆(0))
and one (∆(1)) bath site to the numerically exact (continuous-
time quantum Monte Carlo) result. While the superperturba-
tion around the atomic limit (∆(0)) does not reproduce the
Kondo resonance, the perturbation around the solution for one
bath site already contains this physics.
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Fig. 5: (Color online) Low-temperature results for U = 3 and
β = 100. Shown are the imaginary time Green function (upper
and right axis) and the corresponding maximum entropy
density of states (lower and left axis). The result obtained by
superperturbation around two bath sites requires considerably
less computational effort compared to QMC and is almost
indistinguishable from the exact (CTQMC) result.

that also spectral properties are correctly reproduced. We
show the maximum-entropy density of states [17] (DOS)
obtained from the imaginary time data. The analytical
continuation of the quantum Monte Carlo data (dashed-
dotted line) exhibits the two Hubbard bands at ω=±U/2
and shows the Kondo resonance at the Fermi level. We
cannot reproduce the Kondo physics by perturbing around
the atomic limit (∆(0), solid line), in accordance with the
findings in ref. [6]. However, perturbation around the ED
solution for a single bath site already captures the Kondo
resonance and yields good agreement compared to the
exact solution.
In order to demonstrate that the approach also works

for lower temperatures, we present results for T = 0.01 in
fig. 5. Although the expansion around the solution for
a single bath site (∆(1)) shows small deviations in the
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FIG. 2: Anderson impurity calculation at half-filling, U = 3
and � = 30. Upper panel, ⇢(!) = �Im[1/⇡G(!)] (solid line),
bath DOS ⇢0(!) (dotted line), and sampled ⇢0 discarding con-
figurations (dashed line). Lower panel, interacting Green’s
function G(z) on the imaginary axis (solid line) compared
to CT-QMC results (crosses) using the Triqs-code [16–19],
bath Green’s function G0 (dashed line). (inset) Self-energy
⌃(!) � U/2. Model size n = 6 and 104 samples with 65%
acceptance ratio.
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FIG. 3: DMFT calculation for U = 3, T = 0, (upper left
panel) real part of ⌃(!) � U/2 (solid line) with kinks indi-
cated fitted dotted lines, (upper right panel) full view of the
Self-energy. (lower panel) interacting spectral function in the
upper complex plane (grid-surface) and on the real axis (solid
line). Model size n = 6 and 3 · 104 samples with 49% accep-
tance ratio.

(We have also studied U = 4, T = 0, converging to an
insulator, but a more sophisticated sampling procedure
will be necessary to get good statistics as the G0 DOS
becomes very narrow.)

In summary, we have presented a formalism for calcu-
lating the full analytic self energy of quantum impurity
models by using a representative distribution of exactly
solvable Anderson impurity models. The method is sim-
ple to implement and the initial studies shows that the
method can give very good results. The calculations in
this paper were done a single desktop computer over time
periods of 10-40 hours, but the formalism is well suited

for parallell computing which will be the key to consid-
ering larger n models. A natural extension is to apply
the formalism to more general models, including multi
orbital and cluster generalizations of DMFT and to cal-
culate other dynamical correlations. The motivation for
the formalism is physical, a deeper mathematical under-
standing of the validity of the approximations would be
valuable.

We want to thank, Stellan Östlund for valuable dis-
cussions and the use of his Mathematica routines for
fermions, Ansgar Liebsch for valuable discussions on
low frequency features in the self-energy, and Sebas-
tian Schmitt for providing the NRG results. The work
was supported by the Swedish Research Council (grant
no. 2008-4242) and the Mathematics - Physics Platform
(MP2) at the University of Gothenburg.
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Figure 12: (Color online) Spectral densities ρ(ω) in the metal-
lic regime calculated with a chain of 160 fermionic sites. The
dashed lines show results of a DMFT approach based on the
numerical renormalization group (NRG) as impurity solver.40

non-interacting value

ρ(ω = 0) = ρ0(ω = 0) =
2

πD
(30)

as required by Luttinger’s theorem for a momentum in-
dependent self-energy.2 As the DOS at zero frequency is
not pre-determined in our approach, the pinning crite-
rion (30) provides a sensitive check for the accuracy of
the numerical solutions in the metallic regime. This cri-
terion is very well satisfied, see Fig. 12 and the upper
panels in Fig. 13. A maximum relative error of 3% oc-
curs for interaction values close to the transition to the
insulator, see lower panels in Fig. 13. The fulfillment of
the pinning is an important prerequisite for an accurate
determination of the quasiparticle weight Z below.

Beyond U ≈ D, the DOS shows side features. They
are just shoulders which develop into the lower and upper
Hubbard bands at larger interaction. As expected, they
appear roughly at ω = ±U/2. At U ≈ 2D the Hubbard
bands are well separated from the quasiparticle peak by
a precursor of the gap ∆ in the insulator: a pseudogap
is formed. This pseudogap is determined from U = 2.4D
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Figure 13: (Color online) Spectral densities ρ(ω) in the
metallic regime close to the metal-to-insulator transition.
The dashed lines show results of an NRG-based DMFT
approach.40 For U = 2.6D, the dark solid lines show the raw
D-DMRG data broadened with η = 0.035D around the inner
Hubbard band edges, for discussion see Sec. IIIB 2

onwards by background fits as shown in Fig. 17. The re-
sulting values and their uncertainties are included in Fig.
7. Their extrapolation corroborates that the pseudogap
evolves continuously to the insulating gap at Uc2 ≈ 3D
where the metallic solution becomes unstable towards the
insulating solution.

The well pronounced pseudogap in the metallic solu-

Karski et al. 2008

Compared to DMRG-DMFT

Captures structure, such as  
dispersion kinks and 
Hubbard band peaks
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2-orbital Hubbard, in progress

U=2.4  J=U/4

Rotationally invariant Hund’s J Orbital selective Mott transition

Self energies:

away from half filling:

DOSBare DOS
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Compared to “standard” Exact diagonalization DMFT

ED Distributional ED
•Approximate G_0
•Fit on Matsubaras
•“Exact” self energy
•Very accurate on Matsubaras

•“Exact” G_0
•No fitting, stochastic generation of n-
level Anderson models
•Approximate self-energy
•Full analytic and continuous self-energy
•T=0, no problem
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Summary
•Use non-interacting impurity-bath DOS as probability distribution 

for generating n-level Anderson models.

• Calculate the sample self energy by exact diagonalization

2

analytic continuation and that the method is most e�-
cient for zero temperature. Because a large stochastic
sampling is required for accurate results the calculations
can be numerically demanding. However, the samples
can be generated and addressed independently making it
ideal for parallel computing. In this paper which intro-
duces the method we will focus exclusively on the single-
impurity Anderson model with a semicircular bare den-
sity of states, and the corresponding single-orbital Hub-
bard model when considering the application to DMFT.

For the single-impurity Anderson model the basic ob-
ject of study is the imaginary time action

S = �
Z

d⌧d⌧ 0
X

�

c†�(⌧)G�1
0 (⌧ � ⌧ 0)c�(⌧ 0) (1)

� µ

Z
d⌧

X

�

c†�(⌧)c�(⌧) + U

Z
d⌧c†"(⌧)c†#(⌧)c#(⌧)c"(⌧) ,

with spin � =", #. The non-interacting impurity Green’s
function G0 describes the correlations induced by the
coupling to the surrounding non-interacting bath. In
complex frequency space G0(z) is an analytic function
with poles on the real frequency axis or a branch cut in
the thermodynamic limit. The task is to calculate the
Green’s function G�(⌧ � ⌧ 0) = �hTc�(⌧)c†�(⌧ 0)iS . Subse-
quently we will assume no magnetic order and drop the
spin index and instead of the Green’s function we can
consider the self energy ⌃ given by G�1(z) = G�1

0 (z) +
µ � ⌃(z). For the quantum impurity problem G0 cor-
responds to the bare (non-interacting) density of states
which we take to be semicircular ⇢0(!) = (2/⇡)

p
1 � !2

and let the half-bandwidth be our unit of energy.

Consider a representation of G0 in terms of a large
number of poles on the real axis G0(z) =

PM
i=1

ãi
z�bi

withP
ãi = 1, which for the purpose of doing numerical cal-

culations can be very good for a large number of poles
(104 to 105 or more). Assume that the poles and residues
are such that they can be grouped in N smaller groups of
size n (the total number of poles is thus M = Nn) such
that the total residue in each group is 1/N . (There are
many inequivalent ways of grouping the poles, we make
an unbiased choice, grouping the poles randomly.)

The self energy is given by all one particle irreducible
(1PI) diagrams in terms of the four point vertex U and
the two point vertex �µ connected by G0. [13] We rewrite

G0(z) =
1

N

NX

⌫=1

nX

j=1

a⌫
j

z � b⌫j
=

1

N

X

⌫

G⌫
0(z) , (2)

where the residues are renormalized by a factor N such
that the Green’s functions G⌫

0(z) are properly normalized
for an n-level system,

P
j a⌫

j = 1. For every diagram, we
make the following approximation exemplified by a 2nd
order diagram (here with no insertions of µ and where zp

and zq are Matsubara frequencies).

⌃(2)(z) =
U2

�2

X

zp,zq

G0(zp)G0(zq)G0(zp + zq � z) =

=
U2

�2

X

zp,zq

1

N3

X

⌫,�,⌧

G⌫
0(zp)G

�
0 (zq)G

⌧
0(zp + zq � z)

⇡ 1

N

U2

�2

X

zp,zq

X

⌫

G⌫
0(zp)G

⌫
0(zq)G

⌫
0(zp + zq � z) =

=
1

N

X

⌫

⌃(2),⌫(z) . (3)

The approximation is thus to replace cross correlations
between di↵erent Green’s functions by internal correla-
tions, giving ⌃ ⇡ 1

N

P
⌫ ⌃⌫ where ⌃⌫ is the self energy

related to G⌫
0 .

Considering also the chemical potential on the in-
teracting site µ, all 1PI diagrams include the diagram
with the vertex �µ by itself as well as all insertions
of �µ into the 1PI diagrams constructed from the
vertex U . Within the same approximation, µ acts as a
chemical potential on each of the subsystem such that
G0(z)+G2

0(z)(�µ)+ ... ⇡ 1
N

P
⌫

1
(G⌫

0 (z))�1+µ and we find

that the approximation corresponds to the expression

⌃ � µ ⇡ 1

N

NX

⌫=1

(⌃⌫ � µ) , (4)

which is the basis of the present formalism.
Importantly, ⌃⌫ contains all 1PI diagrams of G⌫

0 , it is
the exact self energy of the quantum impurity action, Eq.
1, with G0 replaced by G⌫

0 , a problem that can be mapped
to an Anderson impurity model with a single interacting
site coupled to n � 1 bath levels. The Anderson model
is formulated in terms of a Hamiltonian which can be
diagonalized numerically for small n and the self energy
calculated as

⌃⌫(z) � µ = (G⌫
0(z))�1 � (G⌫(z))�1 . (5)

Note that it is not an option to work with the sample
averaged Green’s functions instead of the self energy;
1
N

P
⌫ G⌫ is not a proper interacting Green’s functions

of 1
N

P
⌫ G⌫

0 as it does not satisfy the Dyson equation
which requires that a zero of the non-interacting Green’s
function also is a zero of the interacting Green’s function.

Now, G⌫
0 =

Pn
j=1

a⌫
j

z�b⌫j
is mapped to the Green’s func-

tion G⌫
0 = 1/(z�✏⌫0�

Pn�1
j=1

(V ⌫
j )2

z�✏⌫j
) of the Anderson model

H0 = ✏⌫0
P

� c†�c� +
Pn�1

�,j=1[V
⌫
j (c†�cj� + h.c.) + ✏⌫j c

†
j�cj�]

by solving for the parameters ✏i and Vi according to
✏⌫i : G⌫

0(! = ✏⌫i ) = 0, dG⌫
0

d! |✏i = �1/(V ⌫
i )2, and

✏⌫0 = �
P

j a⌫
j b

⌫
j . The full Hamiltonian is H = H0 �

µ
P

� c†�c� + Uc†"c
†
#c#c" and the corresponding Green’s

function G⌫(z) given by the Lehmann representation by
summing over the complete set of eigenstates. [14]

⌃⌫(z)� µ = (G⌫
0(z))�1 � (G⌫(z))�1

• Self energy is the sample averaged self energy

⌃ ⇡ 1
N

X

⌫

⌃⌫

� 1
⇡

Im G0(! + i�) ⌫ = 1, 2, ..., large
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•Completely Parallelizable
•Results for Real and imaginary 
frequencies
•0 or finite temperature
•“Scale free”, shows fine structure 
even at high energy
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