***************************************************************************** A L E S S A N D R O ' S P A R T O F T H E C O U R S E 2 0 0 2 / 2 0 0 3 ***************************************************************************** ============================================================================= PRACTICAL INFORMATION ============================================================================= 1. The Matlab Wavelet Toolbox is installed on the following computers: * downy.etek.chalmers.se * elvira.etek.chalmers.se * fergus.etek.chalmers.se * gladstone.etek.chalmers.se * ludwig.etek.chalmers.se * matilda.etek.chalmers.se ----------------------------------------------------------------------------- 2. Computer Helpdesk: * Tel ....... 772 3445 * E-Mail .... helpdesk@ee.chalmers.se ============================================================================= ============================================================================= UPDATED PROGRAMME ============================================================================= Mon 10 Feb, 08:00-10:00 >> FOURIER TRANSFORMS: OVERVIEW * Expectation Analysis :-) :-( * Continuous Fourier Transform * Fast Fourier Transform ----------------------------------------------------------------------------- Mon 10 Feb, 10:00-12:00 >> FOURIER TRANSFORMS: OVERVIEW * Selected Practical Applications: convolution and deconvolution, correlation and autocorrelation; digital filtering, (optimal) Wiener filtering; power spectrum estimation. * Exercises Wavelets: Do It Yourself :-) ----------------------------------------------------------------------------- Mon 17 Feb, 08:00-10:00 >> WAVELETS: THEORY * Getting Started * Continuous Wavelet Transform ----------------------------------------------------------------------------- Mon 17 Feb, 10:00-12:00 >> WAVELETS: THEORY * Fast Wavelet Transform * Wavelet Packets * Wavelet Properties * Exercises ----------------------------------------------------------------------------- Mon 24 Feb, 08:00-10:00 >> WAVELETS: APPLICATIONS * Data (Pre-)Compression * Data De-Noising ----------------------------------------------------------------------------- Mon 24 Feb, 10:00-12:00 >> WAVELETS: APPLICATIONS * Data De-Noising (continuation) * Other Applications * Exercises ----------------------------------------------------------------------------- Mon 03 Mar, 08:00-10:00 >> HOT TOPIC: "N-Body Simulations with Two-Orders-of-Magnitude Higher Performance Using Wavelets" ============================================================================= ============================================================================= HOMEWORK EXAM ============================================================================= Congratulations!!! "FBI" has selected five Secret Commissions (Groups A-E) for (pre-)compressing the images of their X-Files, and you belong to one of them! Every group must write one report and give it to Alessandro on Monday 3 March at 08:00. ----------------------------------------------------------------------------- Here are the rules: A. The report must be in the form of a complete official document (not just answers to questions). B. The report must be written as thoroughly as possible: understandable to a non-expert reader and, at the same time, interesting to a "waveleter"; also introducing the subject of data (pre-)compression using wavelets. C. You are free to structure the report as you like: originality and creativity are prized. ----------------------------------------------------------------------------- Follow the guidelines below: 1. Open the wavemenu of the Matlab Wavelet Toolbox, click on Wavelet Packet 2-D; and, in sequence, click on File, Demo Analysis, detail ..... if you belong to Group A, tartan ..... if you belong to Group B, detfingr ... if you belong to Group C, tire ....... if you belong to Group D, facets ..... if you belong to Group E. 2. Select a Wavelet and a Level, don't touch the Entropy, and click on Analyze. (What is the meaning of the displayed figures?) 3. Click on Compress. 4. Specify an appropriate Number of zeros, and click on Compress. (What is the meaning of the displayed figures?) 5. Click on Close (don't update the synthesized image). 6. Repeat points 2-5 above, selecting various wavelets and levels, and specifying various appropriate numbers of zeros. 7. Which wavelet is optimal for (pre-)compressing your original image? Which performance can it achieve in terms of compression factor and loss of information? Is there any other important factor to consider for an optimal choice? Describe such a wavelet and its properties. Add any other relevant piece of information .......... NOTE that the Wavelet Packet Display item of the wavemenu does not work correctly; use the Wavelet Display item instead, if needed. 8. Repeat the whole procedure 2-7, but click on Wavelet Tree just after point 2 (and when it is obviously needed). 9. Compare the two procedures above for image (pre-)compression. 10. What would change if the original image were significantly noisy? 11. Draw the major conclusions of your study. =============================================================================