Cosmological fractals

Cosmological Principle

 Milne → whole world-picture as seen by one observer is similar to the world-picture seen by any other observer

Isotropy + 'Copernican principle' →
Homogeneity *** (assumes smooth density)

Cosmological Principle

De Vaucouleurs →

- 30's: galaxies but for a few clusters
- 50's: cluster centers
- Now: superclusters last scale of clustering

Cosmological Principle

• $\log N(m) = 0.2Dm + k \rightarrow '0.6m-law'$

- Local isotropy:
 - Cosmic microwave background radiation
 - Radio sources and X-ray emmiters

Fractal structure

- ISM
 - Recursive Jean's instability and fragmentation
- Galaxies
 - Multifractality; transition to homogeneity

- Self-gravity
 - Gravity creates fractal order from chaos

Fractal Structure

Number density of galaxies in clusters:

- Carpenter → "Nonuniform but nonrandom"
 - $n \alpha N/R^3 \alpha R^{-1.5}$

- Vaucouleurs: $n \propto R^{-1.7}$
 - All observers will find that <n> decreases
 - Distinguishes fractality from clumpiness
- Fractality carries uniformity

3D space maps 2dF Galaxy redshift survey

Correlation length

$$\xi(r) = \frac{\langle n(r_i) \cdot n(r_i + r) \rangle}{\langle n \rangle^2}$$

 Crossover between the scale of strong clustering and an essentially smooth distribution

$$_{-}$$
 \mathcal{D} ≈1.2 and R $_{\rm max}$ < 10 Mpc

Conditional density

- Pietronero: log C(ε) vs log ε *correlation dimension
 - \mathcal{D} ≈2 and R_{max} > 100 Mpc
 - $-n = N/V \alpha R^{D-3}$
 - $-M(R) \propto R^{2}$
 - D=2 : critical fractal dimension eq between large-scale and short-scale fluctuations

10's vs. 100's MPc

10's

Lahav

- No dynamical theory which could have produced strongly fluctuating fractal structures on large scales from the very smooth initial state.
- Isotropic sky distribution of X-ray sources and background radiation

100's

Labini

- Non-uniform fractals may look rather smooth in the sky even for hundreds of Mpc (Lacunarity)
- Ratio of dark matter

So, when does uniformity begin?

- At the crossover of galaxy fractals to uniform density; or maybe much sooner
- When fractal density falls below the density of one of the uniform components (physical vacuum?)

Universality

- Logistic map: $x_{n+1} = r \cdot x_n(1-x_n)$
- Sine map: $x_{n+1} = r \cdot \sin(\pi x_n)$
- Rössler system (Lorentz map):

$$\dot{x} = -y - z$$

 $\dot{y} = x + 0.15y$
 $\dot{z} = 0.4 + z(x - 8.5)$

 $R_n/R_{n+1} = 4.669$

Libchaber experiment

Universality

Second order phase-transitions

$$C \alpha | T - Tc |^{-a}$$

- Critical point
- Critical exponent
- Order parameter
- Universality classes
 - Dimensionality d of space and D of the order parameter

Universality

Statistical self-gravity

- Order parameter: Correlation length
- D=3, D=1

Ising model d=3

Questions?

