GRBs

Astrophysical Dynamics

Mohammadtaher Safarzadeh

GRBs: The Very Brief Version

- Humble Beginnings: A Bomb or Not a Bomb?
 - ⇒ Vela Program
- A few hundred events, a few hundred theories
- Finally, science to the rescue

 - ⇒ BeppoSAX/ROTSE/HST/ (and a host of others)

2704 BATSE Gamma-Ray Bursts

Great debate: 1967-1997

Summary of the Observations of Long GRBs

- A "typical" long-duration GRB lasts 20 s in γ-rays from keV to MeV energies
- It takes place in star-forming (spiral or dwarf irregular) galaxies, but not in ellipticals
- It takes place in a galaxy at z ~ 1
- About 10^{51} 10^{54} ergs of (apparent isotropic) energy are emitted and (apparent isotropic) powers of ~ 10^{50} 10^{52} ergs/s
- It is followed by long-lived X-ray, optical, and radio afterglow emission

Durations

•Two classes:

- 1. Short: T_{90} < 2 s, harder
- 2. Long: T_{90} > 2 s, softer

Models for GRBs

Hypernova

Merging Neutron Stars

Core collapse vs. Mergers

HYPERNOVAE

- Collapse of a >30 M_☉ star
- Massive stars like these are born with low velocities and live for only ~10⁶ y
- When they explode, they are still in their host galaxy, in dusty, star-forming regions
- Long GRBs are indeed found close to the centers of their host galaxies
- ISM density allows shock formation
- Host galaxies are still forming stars

MERGING NEUTRON STARS

- A binary neutron star system may be born with a high kick velocity, > 200 km/s
- The system loses orbital energy by gravitational radiation
- Merger takes place in 10⁸ 10⁹ y
- By then, the system may be outside the galaxy where it was born
- The tenuous medium might not allow strong shock formation, and therefore the production of intense afterglows
- The host galaxy might not be forming stars at a high rate any more

Beaming of GRB Emission

- Beaming into a cone of 5-10° decreases the gamma-ray energies by two orders of magnitude, to ~10⁵¹ erg
- It also increases the total burst rate by the same factor, but this does not contradict anything we know about star formation and evolution
- How to obtain large energy releases, large luminosities, short variability time scales?
- How does the kinetic energy of the ejecta get converted to electromagnetic radiation?
- Fireball/blast wave model

Compactness problem

• $\delta T \le .1$ sec \Rightarrow maximum Size of the source $R \le c \delta T = 3.10^9$ cm.

• $E \cong 10^{51} \text{erg } s.$

Due to the large photon density and energy γγ→e⁺e⁻

Expected thermal spectrum and no high energy photons

Fireball/Blast Wave Model

What are the X-Ray Flashes?

- If XRFs are another manifestation of long GRBs, then are they
- 1. GRBs at high redshift?
- 2. GRBs observed away from the jet axis?
- 3. Explosions with less relativistic ejecta?
- We have fairly complete data on one XRF (XRF020903, z=0.251); in this case, the answer is compatible with 3 (Soderberg et al. 2004)
- Amati relation gives evidence that XRFs and GRBs are part of the same family

GRB/Supernovae Rates and Energetics

	GRBs	SUPERNOVAE
UNIVERSE-WIDE RATE	100 - >1000/day	100000/day (all types) 1000-10000/day (Ic)
RATE PER GALAXY	1/10 ⁵ years	1/50-100 years
ENERGY	10 ⁵¹⁻⁵² erg	10 ⁵¹⁻⁵² erg