WAVELET FRACTAL

1) Fractal dimension.

> 2nr?  assume r=lim, 1/e

N(e) = K(1/e) 2 - > k=2%m forcircle

InN(e) = In(k) — 2 «In (e)
_InN(e)
“In (1/e)

Dimension =

(Rn N Rn—l)




2) Why turbulence created and goes as fractal, (to small scales)?

c* x same direction

X=




3) To describe the turbulence first begins with flow motion:

1
au/6t+ (u.V)u+pW= vAu+F

Vu=20

(1) Advection (u.V)u
(2) dissipation vAu

(3) uvelocity field

(4) density

(5) v kinematic viscosity
(6) F external force

Mﬂhe divide 1 by 2 (Re) which higher the ratio signifying larger turbulence.
>10”3 result UL/V, L is the characteristic of dimension then in astrophysics this feature is
important

On the other hand, importance of scales

Kolmogorov -> energy distributed by power law: E (k) =ke?/3k~5/3

K=kolmogorov constant, e=range of energy transfer, second k is wave number
2pi/lambda
Not valid generally: large scales injected to small ones as dissipation to heat occur in small

scales (assume nature of fractal).

Problems with this assumption.

coherent structure ,large Re by using E(K) resulted to long time which is not right due to

turbulence statistics also Valid in inertial range of intermediate k .

Wavelet is : an oscillation which is localized in time with zero average .

(1) it is finite signal -> cosine functions goes to infinity which is not possible to implement by
computers -> window effect is inevitable ,in the other the power of wavelet is analysis of no
prosodic signals in comparison with ft.

(2) Ft loose the temporal behavior of signal as phase information is impossible to interpret



Individually, but by wavelet techniques it is possible to locate the frequency characteristics of
signal in time .other words how function behave in time.
Figure page 10

Wf(a,b) = f P(OF (D)t

-b
Mexican hat= %e(_(tT)z)

(3) wavelet kernel can be almost any function ,but zero in average also so many features
make it more powerful to analysis ,orthogonal to polynomials and,,,,

Mexican hat good at finding maximum and minimum in the signal and not the scale or
frequencies.

Morletg = exp(iwt).exp (—0.5.t2) figure 6,

:Cor(7) = [ f(t)g(t + T)dt finding how much [f] behavior is similar to [g]

=R(t) = [ f(©)f(t + 7)dt finding how much f behaviour similar to itself.
Remembering turbulence that has large scales that energy goes to small scales and the
fractal nature of turbulence, thus Auto correlation resulted to describing the turbulence
behavior.
f>WH(t).

:WC(a, 1) = [Wf(a,D)Wf(a, b+ 1)dt

Steps to interpretation: normalizing with C(0) and or WC(a,0) ,finding the phase by
tan~1(im(Wc)/real(Wc))

: We try to find the self similarity by wavelet kernel feature behavior ,on the

other hand self similarity means periodicity(not just usual periodicity also up to period two
signal ) in signal -> by wavelet the scales of periodicities are under control by (a), the
location of the (b) and the feature manner by wavelet kernel .



Elapsed time (s)



Michael Farsth LT

Figure 10: Measurement on ceiterline at = = 4d = 100 mm. a) Wavelet auto-correlation
coefficients RWR(a.7) using the Morlet wavelet. b) Ditto but using the Mexican hat
wavelet. ¢) Traditional normalized auto-correlation R(7). From Li (1998).
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Figure 11:  Measurement off the centerline at y = ¢ = 25 mm, # = 5d = 125

mm. a) Wavelet auto-correlation RWR(a,7). b) Phase of wavelet auto-correlation,
ORWR(a,7). ¢) Local wavelet auto-correlation, LEWR(a, 7). d) Traditional normalized
auto-correlation B(7). From Li (1998).
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Figure 12: Measurement off the centerline at ¥ = 25d = 625 mm, x = 10d = 250
mm. a) Wavelet auto-correlation RWR(a. 7). b) Phase of wavelet auto-correlation,
HRWR(a, 7). ¢) Local wavelet auto-correlation. LRWR(a.7). d) Traditional normalized
auto-correlation (7). From Li ( 1998).

Singularity spectrum.




If (x) = Pn(x — x0)|| < C|x — x0|"
holder dimentoins

x—x0

Wf(a,x0) = 1/af C(x — xO)h(")q)( )dx = Cla| *h(x0) [ x h(x0)¢p(x)dx

a

[ h ] which coming from Hélder equation resulted to Hausdorrf dimension .

Problem, experimental data do not contain information at infinitely small scales a.

then the wavelet transform will not only involve the point x0 for which we want the singular
behavior of nearby points will mix with the point x0.

Instead of observing the dependence of the wavelet transform on the scale a for a local

point x we make a global approach where we make use of a partition function.

Z(q,a)=f (Wf)4dx problem negative g may cause of divergence for small Wf then if
focus on maxium to describe the behavior ,integral can be change by >.(Wf)4
Result:

If (a) goes to zero the Z((],a) goes to aT(Q)

By Legendre transform and put the constrains as left equation is minimum

regarding then -> D(h) =q * h-T(C]) then by derivation :h=0 5 which is holder

exponent ,which lead to fractal dimension ,notice that 7(q) is linear regarding q

= There is one single holder exponent .-> characterize the turbulence



