Large Scale Turbulence in Galactic Disks during Formation

Velocity Dispersion & Main Drivers

Contents

- 1. Turbulence
- 2. Observations
- 3. Simulation (ICs and Recipes)
- 4. Evolution
- 5. Developed Turbulence
- 6. Main Driver
- 7. Starbursts
- 8. Limitations
- 9. Conclusions

Turbulence

Source: http://fluid.stanford.edu/~fringer/movies/shear_convect/kh_rt_shear.jpg

Chalmers University of Technology

Observations

Observations

Source: Dib et al. (2006): The supernova rate-velocity dispersion relation in the interstellar medium; Figures 1 and 2

Observations

Source: Dib et al. (2006): The supernova rate-velocity dispersion relation in the interstellar medium; Figures 1 and 2

Simulation

Simulation

Initial Conditions Temperature, Density, Rotation Curve

Simulation

Initial Conditions Temperature, Density, Rotation Curve

Recipes

Star Formation, Cooling, Poisson, Hydrodynamics, SNe

$$Q = \frac{\kappa c_s}{\pi G \Sigma}$$

$$Q = \frac{\kappa c_s}{\pi G \Sigma}$$

Time [Gyr]	Q (By Volume ~ Gas)	Q (By Mass ~ Clouds)

$$Q = \frac{\kappa c_s}{\pi G \Sigma}$$

Time [Gyr]	Q (By Volume ~ Gas)	Q (By Mass ~ Clouds)
0	2 – 10 (all stable)	2 – 10 (all stable)

$$Q = \frac{\kappa c_s}{\pi G \Sigma}$$

Time [Gyr]	Q (By Volume ~ Gas)	Q (By Mass ~ Clouds)
0	2 - 10 (all stable)	2 – 10 (all stable)
0.25	0.2 - 1 (fragmentation)	0.2 - 1 (fragmentation)

$$Q = \frac{\kappa c_s}{\pi G \Sigma}$$

Time [Gyr]	Q (By Volume ~ Gas)	Q (By Mass ~ Clouds)
0	2 - 10 (all stable)	2 – 10 (all stable)
0.25	0.2 - 1 (fragmentation)	0.2 - 1 (fragmentation)
0.5	0.75 – 10 (tail to higher Q)	Peaks at 1 (tail to higher)

$$Q = \frac{\kappa c_s}{\pi G \Sigma}$$

Time [Gyr]	Q (By Volume ~ Gas)	Q (By Mass ~ Clouds)
0	2 – 10 (all stable)	2 – 10 (all stable)
0.25	0.2 - 1 (fragmentation)	0.2 - 1 (fragmentation)
0.5	0.75 – 10 (tail to higher Q)	Peaks at 1 (tail to higher)
>1	0.8 – 100 (mostly stable)	0.9 – 4 (marginally stable)

Evolution

Marginally Stable ($Q \sim 1.2$)

Marginally Stable (Q \sim 1.2) Swing Amplification, Coupling Stars & Disk

Marginally Stable ($Q \sim 1.2$) Swing Amplification, Coupling Stars & Disk

Fully Unstable (Q < 1.2)

Marginally Stable ($Q \sim 1.2$) Swing Amplification, Coupling Stars & Disk

Fully Unstable (Q < 1.2) Cloud/Cloud Interaction, Stirring Diffuse Gas

Developed Turbulence

Source: Agertz et al. (2009): Large scale galactic turbulence: can self-gravity drive the observed HI velocity dispersions?; Figure 16

Main Driver

Chalmers University of Technology

Main Driver

Biggest Energy Reservoir → Galactic Rotation

Starbursts

Starbursts and Supernovae

Source: Agertz et al. (2009): Large scale galactic turbulence: can self-gravity drive the observed HI velocity dispersions?; Figure 23

Limitations

Limitations

• Only Large Scale Effects

Limitations

- Only Large Scale Effects
- Small Scale Effects Not Included:
 - MRI in Accretion Disks
 - Jets
 - Solar Winds
 - Fluid Instabilities (RT+KH)

Limitations

- Only Large Scale Effects
- Small Scale Effects Not Included:
 - MRI in Accretion Disks
 - Jets
 - Solar Winds
 - Fluid Instabilities (RT+KH)
- Heating
 - Only SNe
 - Could Include Stars (Uniform Radiation Field)

Chalmers University of Technology

Conclusions

Conclusions

• Early: Cooling \rightarrow Gravitational Instability \rightarrow Fragmentation

Conclusions

• Early: Cooling \rightarrow Gravitational Instability \rightarrow Fragmentation

• Later: Shear & Cloud/Cloud \rightarrow Drag Thin Gas \rightarrow Turbulence

Conclusions

• Early: Cooling \rightarrow Gravitational Instability \rightarrow Fragmentation

• Later: Shear & Cloud/Cloud \rightarrow Drag Thin Gas \rightarrow Turbulence

• High SFR \rightarrow SNe Feedback Main Driver

(Optional Contents)

Density, Rotation Curve, Cooling

• Decrease Initial Mass Density → Less Clouds → Less Stirring and Cloud/Cloud Interaction → Smaller Veloicty Dispersion

- Flatter Rotation Curve (higher V_c at low R) → Shearing Instability stronger as more mass is dragged around
- Limits on T_min \rightarrow Limit on Q_min \rightarrow Less Turbulence

Phase Diagrams

Source: Agertz et al. (2009): Large scale galactic turbulence: can self-gravity drive the observed HI velocity dispersions?; Figure 7

Scales of Instabilities

Source: Agertz et al. (2009): Large scale galactic turbulence: can self-gravity drive the observed HI velocity dispersions?; Figure 9

Velocity Dispersion vs. Radius

Source: Agertz et al. (2009): Large scale galactic turbulence: can self-gravity drive the observed HI velocity dispersions?; Figure 12

Evolution of Q

Source: Agertz et al. (2009): Large scale galactic turbulence: can self-gravity drive the observed HI velocity dispersions?; Figure 11