

Content

What are supernovae Why are they so important Classification Type IA + applications Type 2 + applications Instabilities and turbulence

What are supernovae?

Unlike the name proposes SN are the violent death of a Star

Why are SN important?

important applications (despite pretty pictures): production of heavy elements distance measurements

Classification

SN la explosion

Wave of thermonuclear fusion through white dwarf Synthesizing elements (Ni, Co, Fe, Si, S, Ca, Mg, O) The explosion is not what we see as the supernova

SN la Light-curve

Radioactive decay of 56Ni (half-life 6.1 days) to 56Co and ultimately to 56Fe (half-life 77 days) Gamma rays are thermalized, ~ 85% of the light is in the optical (4000Å)

SN la Light-curve

SN la Brightest supernovae

Slow accretion White dwarf mergers Sub-Chandrasekhar mass explosions

Slow accretion

supersoft X-ray sources can generate only 5% of SN 1a

White dwarf mergers

smaller white dwarf forms accretion disk would create NS WDs must have same mass

Sub-Chandrasekhar mass explosions

Observed ejecta mass is much lower than Chandrasekhar mass

"double detonation"

Distance measurements

better than 6%

m - M = 5mag * log(r / l0pc)

m = apparent magnitude M = absolute magnitude

Dark Energy

Search for deceleration parameter led to discovery of acceleration

Dark Matter

Dark Energy

^{4 %} 23 %

73 %

SN type 2 Core collapse SN

Iron core Chandrasekhar Limit Collapse + photo-disintegration e⁻ + p => n + V_e Degenerate neutron pressure stops core collapse Reflection of outer layers and shock Neutrino trapping

SN 2 Light-curves

Plateau due to ionized Hydrogen = high opacity Linear due to expulsion of Hydrogen in progenitor

Which stars become SN 2?

Initial mass < 14 solar masses < initial mass

(traditionally 8 solar masses)

no SN

Supernova explosion

White Dwarf (final mass < 1,4 solar masses)

Black Hole (final mass > 3 solar masses)

Neutron Star (final mass < 3 solar masses)

Hertzsprung-Russell-Diagram

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

To sum up ...

Like the "stars" here on earth, the ones which shine the brightest, live the shortest.

Production of heavy elements

r-process neutron capture faster than β-(s-process) slow neutron capture

Instabilities

Rayleigh-Taylor instability inverse gravity ,,fingers"

Kelvin-Helmholtz instability

shear

transition to turbulent flow

Rayleigh-Taylor instability

Kelvin-Helmholtz instability

movie

Conclusion

Supernova include all aspects from physics very complicated to simulate new SNIa scenario? standard candles production of heavy elements much more research must be done...