Astrophysical Fractals

Robert Singh

Hot-Topic Presentation of Astrophysical Dynamics

December 9th 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Astrophysical Fractals

Turbulence & Gravity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion

Cosmological Principle

Basic Assumptions:

- homogeneity
- isotropy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What Is A Fractal?

• Shape <u>or</u> distribution, where each part of it is a version of the whole, reduced in scale.

Fractal Dimension

Astrophysical Fractals

Turbulence & Gravity

Conclusion

What Is A Fractal?

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

- statistical property
- real number \mathbb{R} , not just natural number \mathbb{N}
- \bullet topological dimension \leq D \leq embedded space

Astrophysical Fractals

Turbulence & Gravity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusion

Fractal Dimension

HexaflakeD = 1.77

Fractal Dimension

・ロト ・聞ト ・ヨト ・ヨト

э

Distribution of galaxy clusters

 $D\sim 2$

(meassured by SDSS)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fractal Dimension

- A distribution is fractal of correlation dimension D if $N({<}R) \propto R^D$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

- $\bullet\,$ A distribution is fractal of correlation dimension D if $N({<}R) \propto R^D$
- $\bullet~D=3$ if the distribution is homogenous

- A distribution is fractal of correlation dimension D if $N({<}R) \propto R^D$
- $\bullet~D=3$ if the distribution is homogenous
- D is used to characterize the degree of clustering

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• fractal dimension:
$$D = \frac{d \ln N($$

(ロ)、(型)、(E)、(E)、 E) の(の)

Fractal Dimension

• fractal dimension:
$$D = \frac{d \ln N($$

• number of galaxies within a distance R:

$$N(< R) = \frac{4}{3}\pi R^3 \bar{n} + 4\pi \bar{n} \int_0^R r^2 \xi(r) dr$$

Fractal Dimension

• fractal dimension:
$$D = \frac{d \ln N($$

• number of galaxies within a distance R:

$$N(< R) = \frac{4}{3}\pi R^3 \bar{n} + 4\pi \bar{n} \int_0^R r^2 \xi(r) dr$$

• correlation function: $\xi(\vec{r}) = \frac{\langle n(\vec{r}_i) \ n(\vec{r}_i + \vec{r}) \rangle}{\langle n \rangle^2} - 1$ $\xi(\vec{r}) = 0$ in case of homogeneity $\xi(r) \propto r^{-\gamma}$ with $D = 3 - \gamma$

Astrophysical Fractals

Turbulence & Gravity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- 10^{-4} pc \leq R \leq 10^{2} pc
- 10^{-3} M $_{\odot} \leq$ M \leq 10^{6} M $_{\odot}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Astrophysical Fractals

ISM

- $10^{-4} \text{ pc} \le \text{R} \le 10^2 \text{ pc}$ • $10^{-3} \text{ M}_{\odot} \le \text{M} \le 10^6 \text{ M}_{\odot}$
- $10^{-3}~M_\odot \leq M \leq ~10^6~M_\odot$

② Galaxies

- $10^4~\text{pc}~\leq R~\leq~10^8~\text{pc}$
- $10^{10}~M_\odot$ \leq M \leq $10^{17}~M_\odot$

Astrophysical Fractals

ISM

- 10^{-4} pc \leq R \leq 10^{2} pc • $10^{-3} M_{\odot} < M < 10^{6} M_{\odot}$

Galaxies Galaxies

- 10^4 pc $< R < 10^8$ pc
- $10^{10} M_{\odot} < M < 10^{17} M_{\odot}$

• D = 1.6 - 2.0 in both cases

- ullet scales probed by CMB measurements \sim 1000 $h^{-1}~{\rm Mpc}$
- ullet scales probed by local galaxy surveys \sim 100 h^{-1} Mpc or less

- ullet scales probed by CMB measurements \sim 1000 h^{-1} Mpc
- ullet scales probed by local galaxy surveys \sim 100 h^{-1} Mpc or less
- $\bullet\,$ current data indicates uniform galaxy distribution on scales $\gtrsim 300 h^{-1}~{\rm Mpc}$
- some studies suggest Abell cluster distr. is homogeneous for $\sim 600 \; h^{-1} \; {\rm Mpc}$

- ullet scales probed by CMB measurements \sim 1000 h^{-1} Mpc
- ullet scales probed by local galaxy surveys $\sim 100~h^{-1}$ Mpc or less
- $\bullet\,$ current data indicates uniform galaxy distribution on scales $\gtrsim 300 h^{-1}~{\rm Mpc}$
- some studies suggest Abell cluster distr. is homogeneous for $\sim 600 \; h^{-1} \; \rm Mpc$
- distinction between luminous objects and total matter

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Astrophysical Fractals

ISM

• Observations of molecular clouds reveal hierarchical structures.

Astrophysical Fractals

ISM

- Observations of molecular clouds reveal hierarchical structures.
- Galaxies
 - not homogeneously distributed
 - hierarchical structure: groups, clusters & superclusters
 - Galaxies & clusters show scaling property $\xi(r) \propto r^{-\gamma}$

ractal Dimension

Astrophysical Fractal

Turbulence & Gravity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion

Origin of Astrophysical Fractals

• Formation based on turbulence and/or self-gravity?

• Reynolds number: $R_e = \frac{\sigma I}{\nu} \stackrel{ISM}{\approx} 10^9$

 $(R_e \gg 10^3 : turbulent)$

- σ : velocity dispersion
- I : typical dimension for cloud cloud collision
- ν : viscosity (negligible)
- ISM is governed by strong fluctuations in density and velocity

• Characteristic for media with 2nd order phase transition.

Turbulence

- Simulations require enormous computational requirements.
- only 3 levels for pressure-less turbulent flows without self-gravity
- inducing heating and cooling (time scales < dynamical)
 - polytropic eq. of state: $P \propto
 ho^{\gamma}, \gamma = 0-2$ ($\gamma = 1$: isothermal)
 - logatropic eq. of state: $P\propto log(
 ho)$
- This does not represent dynamical processes in the ISM

Gravitational Instability

- Simulations of a gravitational unstable media shows filaments and clusters over long time scales.
- Non-linear gravitational instability leads to long range fractal order (scaling laws).
- Cosmic expansion supports galactic fractals
- Galaxy differential rotation supports ISM fractals
- Scaling laws persist as long as the larger scale is driving the gravitational instability.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Results

Sample	$R~(h^{-1}~{ m Mpc})$	D_2
Perseus-Pisces	1.0 - 3.5	1.2
	3.5 - 20	2.2
QDOT	1.0 - 10	2.25
	10 - 30	2.77
CfA	1.0 - 30	2.0
Stromlo-APM	30-60	2.7 - 2.9
ESP	300 - 400	2.93
	~ 500	$3 - D_2 = 10^{-4}$
		with $\sigma_8 = 2$, $\Gamma = 0.5$
	~ 1000	$3 - D_2 = 2 \times 10^{-5}$
		with $\sigma_8 = 1.4, \Gamma = 0.5$
	Sample Perseus-Pisces QDOT CfA Stromlo-APM ESP	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Conclusions

- distribution of ISM and galaxies is self-similar
- galaxy fractals are still growing to larger scales
- num. simulations are confined by practical constraints
- quasi-station fractals due to self-gravity and energy injection
- turbulence is more likely to be a consequence
- smooth transition to homogeneity