
The Celestial vault

The vault as outside space

Standing on Earth you are aware of two things. A seemingly flat expanse (never
mind if disturbed by high mountains and deep valleys), and a spherical vault
that spans it. On Earth you can move around and in principle not only see
things but also touch them and view them from different perspectives. But the
objects of the sky are only accessible by sight, definitely not by touch. In ancient
times two geometries developed. The flat Euclidean geometry with which we are
most intimately acquainted and applies to our everyday world, and a spherical
geometry which applies to the celestial world. Thus the Greeks in a sense were
familiar with some non-Euclidean geometry, but prefered not to think of it in
this way, for reasons that should become clear. For all what ancient people,
including the Greeks, could know, the objects in the sky could be infinitely far
away, thus truly inaccessible by touch, not part of the space in which we can
in principle move. If so there would be an unbridgable separation between two
worlds. This is science not superstition, although in retrospect it is tempting to
think of it as such, because the science of astronomy rests on the assumption
that the celestial objects are part of space and not infinitely far away. The most
basic consequence of this is that we can talk about distances to celestial objects
and thus meet the challenge of measuring them.

The vault as seen as a sphere inside space

The celestial sphere is something that we experience from the inside, but when
we want to picture it we see it from the outside, and this is something quite
different.

O

A sphere which is seen from the outside is something
we want to touch. The great circles on it are clearly
curved, they are circles in fact, but when seen from
the center (O) they are seen as straight lines, be-
cause they are given by the intersection of planes
through the center. In fact our field of vision is
a sphere, the immobile eye has no means of judging
distances, it can only perceive directions, and the vi-
sual sphere parametrizes all the directions there are,
and gives us the first example of something bounded
but yet without boundary.

It is ironic that the geometry most accessible to our visual sense is the spherical,
but of course what we think of as the remarkable global properties of non-
Euclidean geometry, such as the failure of angles to add up to π is not as
striking as our field of vision that allows scrutiny is quite limited1. The first

1Our field of vision is actually surprisingly extensive, but at its wide margins we can only

detect movement as such, not the objects that move

1



step towards the spatial realization of celestial objects is to see them as actually
placed on the inside of a sphere in space at whose center we are placed. One
can then ask the question about the length of its radius, and more intriguingly
what lies beyond it, because thinking of it as an actual sphere, it divides infinite
Euclidean 3-dimensional space in a finite part and an unbounded infinite one,
because for some reason we think that any ray emenating from the eye will
travel indefinitely. Another possibility, which does not seem to have entered the
minds of the ancients is that the ray would eventually return to the eye. That
we would in fact live in a 3-dimensional sphere. If the celestial sphere would be
a ballon, and we would expand it, the expansion would only go so far until it
reached a maximum size, the equator of the universe, and then it would decrease
in size and in the limit contract to a point, just as the latitudes starting at the
northpole are expanding circles until they reach the equator (a great circle)
and then contact until becoming a point at the southpole. The 3-dimensional
sphere is no mystery, it can be constructed in 4-dimensional space as the loci of
all points equidistant from the center, just as we define the circle in the plane,
and the ordinary sphere in our three-dimensional space. However, it does not
have to be constructed in that way, it does not require 4-dimensions to make
sense, but it can be hard to imagine it intrinsically, just as it is very hard for us
to imagine a circle unless we see it in the plane.

Depth and Parallax and angular Size

Now this is not fanciful, in fact it is hard to reject out of hand that the universe
is in fact bounded without boundary. But this belongs to cosmology and we
have to be concerned with more down-to-earth matters. In ordinary space we
experience depth, for objects close to us this is part of stereoscopic vision, but
in general we derive it from our movement in space. When we move we change
perspective slightly, and the changes of those perspectives let us infer the depth
of space, in a rather subtle but instinctive way. Stereoscopic vision depends on
two eyes who are set apart and hence give slightly different points of view which
the brain is able to integrate into one image. That the images are different you
can easily convince yourself by alternating closing one eye and the other. The
most basic phenomenon is that distant objects appear smaller than when close.
This is useful when you ’know’ the size of an object, but if you see an airplane in
the sky when very young, you may think of it as a toy object quite close to you.
But how big is an object, say the Moon in the sky? In one sense it is easier,
or at least more direct, to measure objects on a sphere, in particular in your
visual field. Due to the phenomenon of scaling in Euclidean space (meaning the
existence of similar but non-congruent triangles), there is no canonical way of
measuring distances, to do so you have to arbitrarily select a unit, and measure
lengths in terms of that.
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But the natural measure on the sphere is the angle
a segment extends as seen from the center, thus the
angular extension in your field of vision. Angles you
can define intrinsically, as the notion of a right an-
gle can be communicated, but not an arbitrary unit
which refers to a particular object. It is no coin-
cidence that the meter was defined as the equator
to be 40 million meters. In practice it is hard to
measure the circumference of the equator so it was
replaced by a physical unit residing in Paris.

Now what you call a right angle, whether π/2 as mathematicians do or 90o as
is commonly done, an old tradition to which the astronomers still adhere is of
less importance, you only need a currency exchange. Mathematically the size of
angles are identified by the length of their corresponding arcs on a circle of radius
one, the so called unit circle, and this has a great advantage when you want
to express the trigonomteric functions in a series, especially sine and cosine. In
particular sine and tangent for small angles are close to the numerical values
of the angles. In particular for small angles, or equivalently distant objects,
distance is more or less proportional to apparent size. This is not true for
close distances and objects occupying a large part of your visual field where the
relation is more subtle, but which most of us automatically deal with through
our stereoscopic vision.

A tower seen from a distance equal to its height has an apparent extension of
450 which is very large and hard to take in at one time and thus atypical of the
objects we look at in the sky (The Milky Way of course is the biggest object we
can see in the sky, but we cannot take it all in at a glance, apart from the fact
that it extends beyond any half-sphere and thus is never simultaneously visible
in its entirety). The Moon and the Sun are approximately of the same apparent
size meaning about half a degree (or 30′ (minutes) or mathematically ∼ 1/120)
which is also about the apparent size of Boeing 747 at cruising altitude overhead.
The bright star Mizar of the Double Dipper, has a fainter star Alcor separated
by twelve minutes of arc, providing a modest challenge. Normal human eye-
sight detects more than seven stars in the Pleiades, involving significantly less
separation. The naked human eye cannot, however, separate anything closer
than half a minute of an arc, around thirty arc seconds. Jupiter at its closest
extends about that angular distance, but still cannot really be seen as a disc.
Thus the planets appear as point sources just as do the stars, but they shine
with a steadiness not to be seen by the latter. As far as I know, no disc of any
star has been resolved. The closest star is about a quarter million as distant as
is the sun, and will extend about 0.01 seconds of arc one tenth of the apparent
diameter of Pluto. Such minute resolutions cannot be obtained by telescopes
on Earth due to the turbulent effects of the atmosphere.

3



A B C

C

B

A

O O’

ABC

When traveling by train you notice that objects close
to the train appear very briefly in your visual field,
while the further away they are the less they change
their positions. The phenomenon is referred to as
parallax. As you move, the direction to an object,
seen as a point in your visual field will change, the
change actually being equal to the apparent length
of your travel as seen from the object. If you travel
100 meters an object 10 km away will have moved
roughly half a degree, the apparent diameter of the
Moon. Of course if the train changes its direction,

so will those of the objects, but that is something different. If you rotate every-
thing in your vision, regardless of distance, will change.

We all have our private fields of vision, which will change whenever we turn
our heads or move our bodies. But there is also a common field of vision, given
by the distant objects in the sky. The configurations of the stars in the sky will
be the same for all observers, yet depending on your position on Earth and the
time of day, the part of the sphere you will see will be different.

Spherical co-ordinates

O

Equator

To mathematically describe the positions of objects
on a sphere it is convenient to use spherical co-
ordinates. This presupposes an axis as well as a fixed
meridan. The axis define a pair of anti-podal points
(the poles) and a great-circle the equator equidistant
from both. Circles cut out by planes perpendicular
to the axis will be referred to as the latitudes (or
in astronomy - declinations), while great circles cut
out by planes containing the axis, will be referred to
as longitudes (or in astronomy acension).

Looking at the vault above you there is a center, the point just above you,
referred to as zenith. It has a corresponding anti-pode - the nadir, which you
cannot see.

O
α

Horizon

Zenith

Nadir

Anyway it gives a natural axis, and the equator will
be given by the horizon, which we out on the ocean
would experience as a straight, although it curves
around as a circle. Thus any object seen on the
sky will be given an altitude, namely its angular
height above the horizon. However, there is no nat-
ural point on the horizon, which may serve as the
zero meridan (just as there is none on Earth, the
Greenwhich one won out, being a matter of politics
or social conventions).
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It is important to pin-point positions in the sky, all visual astronomy hinges
on it, but those positions will change, so they are inconvenient to use in giving
the positions of stars.

O

Polar Star

Celestial Equator

Horizon
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First the celestial sphere with its stars seems to ro-
tate, this being an effect of the rotating earth. As
you know it was an old question whether the Earth
rotates or the sky, our senses tell us the former, it
takes some effort of the imagination to fix the fir-
mament and feel the ground rotate. The rotation of
the celestial sphere goes through a fixed axis. This
axis will coincide with the natural zenith-nadir ones,
if and only if we are at one of the poles. Now at our
present time we are lucky enough to have a bright
star close to the axis on the Northern hemisphere,
namely the Polar star.

With some simplification we can say that the sky rotates around the Polar
star. At the Northpole, the Polar star will be at zenith, at the Southpole at
nadir, and hence invisible.

North Pole

45 degree

Equator

At the poles we can see exactly half of the sky, noth-
ing more, nothing left, and when the stars rotate,
they keep their altitudes. Outside the poles, the
Polar star is not on the natural axis, and will with
that define a plane that cuts the sphere in a lon-
gitudal great circle (given two distinct points, not
anti-podal, they will determine a unique great cir-
cle). The part on the same side as the Polar star will
determine a point on the horizon, which will be due
north. Thus only due to the rotating sky are we able
to give the directions of north, and its opposite - the
south. This does not work on the poles though. Any
direction from the Northpole is south, any direction
from the Southpole is north. The altitude of the Po-
lar star gives the latitude of our position. When it is
close to Zenith we are close to the North pole, when
it is close to the horizon we are close to the equa-
tor. The altitude of a star is at highest when it is
due south, at its lowest when it is due north (on the
Northern hemisphere). When a celestial object is at
its highest it is said to culminate. Given the axis of
rotation, each star will have a declination given by
its distance from the Polar star. Unlike the altitude
of an observed star the declination is fixed.

Positions of declination zero make up the celestial equator, those with positive
declination make up the northern hemisphere, the one containing the Polar star,
while those with negative declination will make up the southern hemisphere. In
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astronomy it is common to use the suffixes North and South, just as in geog-
raphy, but in mathematics it is more convenient to use positive and negative.
What is positive and negative is just a pure convention, but the point of con-
ventions is to stick to them, otherwise there will be unnecessary confusion.

0 h

8 h

16 h

If the altitude of the Polar star is L (i.e. the latitude
of the geographical position) and the declination of
the star is D then the altitude of the star when due
south will be L−D+90 and due north L+D− 90.
There will be three kinds of stars. If L+D−90 ≥ 0
or equivalently D ≥ 90 − L then the star will al-
ways be above the horizon (but it might be invisble
for other reasons such as the sun being above the
horizon as well, to which we will return). Such stars
are called circumpolar stars. We may also have that
L−D+90 ≥ 180 or equivalently D ≤ L− 90 which
means that the star is never above the horizion, and
thus circumpolar at the antipode. Then for decli-
nations between, the star is sometimes above, some-
times below the horizon. The objects on the celestial
equator will be above horizon half of the time, and
below the horizon the other half. Stars with pos-
itive declinations will on the Northern hemisphere
be above the horizon more than half the time, and
below less than half the time. The opposite will
be true for stars with negative declination. At the
equator there are no circumpolar stars, at the poles
there are no intermediate stars. At the equator all
the stars will be above the horizion half the time
and below half the time as the circles traced by the
stars will always be perpendicular to the horizon.

The Sky as a Clock

The rotation of the celestial sphere provides a clock. By a clock is meant a
manifestation of time in space. A natural unit of time would be one revolution,
meaning the time between two successive culminations of a given star. Then
the time (of night) can be read off by the position of the star in its circle. This
can be measured to some accuracy by determining its altitude. In ancient times
there were no more accurate clocks.
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Given any object (star) on the sky we can deter-
mine the fraction of time it is above the horizon.
This depends on its declination as well as the lat-
itude of the observer. If the declination is α the
star traces a circle of radius cosα on the celestial
sphere, whose radius is set to one. At time θ (note
that we think of time as angle and thus as position
on its circle, once we have decided on a zero po-
sition (conveniently at due south on the northern
hemispher) and a direction of rotation.) its height
will be given by sin(L) sin(α) + cos(θ) cos(α) cos(L)
where L is the latitude. To see this, note the fol-
lowing. First the point P is the center of the lati-
tudinal cirle with radius cos(α). The length |OP | of
the segment OP is given by sin(α), hence the height
of P above the horizon will be given by |PH| =
|OP | sin(L) = sin(α) sin(L) (Note that if α is nega-
tive, this height will be negative, i.e. P will be below
the horizon). We also remark that the segment UP
has the same length as the segment UU ′ which is
given by cos(θ) cos(α). We now need to compute the
length of UR. This will be given by |UP | cos(L) =
cos(θ) cos(α) cos(L). The total height of U above
the horizon will then be the formula above. Re-
call that if L = 0 i.e. on the equator, each star is
above the horizon exactly half the time namely when
90 ≤ θ ≤ 270. Otherwise only stars with declination
zero will have that property.

From this we can easily compute the critical angle (θ0) when the object is
at the horizon. It is determined by

cos(θ0) = − tan(L) tan(α)

Example The latitude L of Gothenburg is about 58o and Sirius, the
brightest star on the sky has declination −17o giving θ0 = 60.7.
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Thus Sirius is above the horizon about the third of the time. At
summer the sun will also be above the horizon when that happens,
so Sirius will be visible much less than that, and in fact only around
winter. We will return to that.

We can also use the formula to determine the angle θ when measuring the
altitude of a star.

Example An observer is situated at Mumbai with latitude 19o. A
star A culminates at an altitude of 40o, while a star B with known
declination of 60o and known right acsension (longitude) has an al-
titude of 20o. Determine the declination of A and the difference in
longitude between the stars A and B. (Thus if the longitude of B
is known we can work out the longtitude of A). To work out the
declination of A is easy, but there are two solutions, depending on
whether A is close to the Polar start or not. In the first case it
distance to the Polar star is 40−19 = 21 and thus the declination is
90− 21 = 69, in the second case the distance is 180− 40− 19 = 121
and the declination is 90 − 121 = 31. In the first case the culmina-
tion is in the northern part of the sky, in the second the southern.
In the first case we observe it facing the Polar start, in the second
with our backs to it.

To use the star B as a clock, we work out its height above the horizon
as sin(19) sin(60)+cos(θ) cos(19) cos(60) thus 0.282+0.473 cos(theta).
If the altitude is 20o we solve for 0.282+0.473 cos(theta) = sin(20) =
0.342 thus cos(θ) = 0.127 with solutions θ = ±82.6941 the sign de-
pending on which side of the Polar star it is on. If on the east it is
behind, if on the west ahead.

There are also other ways of making the computations.
Matrix multiplication:

As you all know a rotation of angle θ is given by

(

cos θ sin θ
− sin θ cos θ

)

this

can be extended to 3-dimension by the matrix





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 which

fixes the z−axis. Let us denote it by Zθ. In a similar way we can write
down the matrices that give rotations around the x− and y− axi. Explic-

itly Xθ =





1 0 0
0 cos θ sin θ
0 − sin θ cos θ



 and Yθ =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



. They are

all orthogonal matrices, in fact they give examples of so called 1-parameters
subgroups and for suitable θ1, θ2, θ3 any orthogonal matrix can be written in
the form of a product Zθ1Yθ2Xθ3 , as you know there is a 3-dimensional family
of 3×3 orthogonal matrices. If you just look at the 2-dimensional family Zθ1Yθ2
you can move any point P except the poles (0, 0,±1) to any other point on the
sphere. If we fix θ2 = π/2 − L we have a 1-parameter subgroup of rotations
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around the axis through the point (0, 0, 1)Yθ2 . The orbits of points will be the
orbits of stars on the sky at latitude L. Thus if you have a star of declination
α you chose the point P = (− cosα, 0, sinα) and look at the z− coordinates of
PZθ1Yπ/2−L. This can easily be computed getting sinL sinα+ cosL cosα cos θ
recapturing the formula we obtained geometrically.

As an application we can graph the z-coordinate (note that this will be sine
of the altitude) of Sirius at the horizon of Gothenburg.
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Spherical Trigonometry:

This was developed already by the Greek, and was a subject astronomers
had to learn until the 60’s (at least). Nowadays the computations are done me-
chanically by computers (as above) and need not be so efficient and conceptual.

α γ

β

C

B

A

L

We have the data of a circle of radius C with center
at P and a great circle L (line) cutting a radius
orthogonally, getting a triangle to the left. We want
to compute the angle α because that will give us
the fraction of the circle ’above’ the line L (given
by the horizon). The radius C we can read off from
the declination of the star, and B is given by the
altitude of the Polar star.

We will now use two facts from spherical geometry. The first is the spherical
form of Pythagoras theorem which is written

cosC = cosA cosB

Furthermore we have the spherical form of the sine theorem

sinα

sinA
=

sinβ

sinB
=

sin γ

sinC

we get sinα = sinA
sinC from the sine-theorem (recall that γ is right angle, and
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hence sin(γ) = 1) and cosA = cosC
cosB from Pythagoras. This leads to

sinα =

√
cos2B − cos2 C

cosB sinC

and with some straightforward trigonometric manipulations we end up with the
elegant

cosα =
tanB

tanC

Note that if we set α = π − θ and B = L and C = π/2− α we retrieve our
original formula.

The Movement of the Sun

The celestial sphere makes a complete rotation in 23h 56m (using our units
of time), which is 4 minutes short of the 24 hour period. The former period
is also the exact period of the rotation of the Earth. Those four minutes are
important. The year contains 365 days (and a little bit more) but during that
time the earth has rotated 366 times around its axis (and a little bit more). If
the Earth would face the same side to the Sun (as the Moon does to the Earth)
the notion of a day would not make sense, or there would be zero days to the
year, but with respect to the stars the Earth would make one (=0+1) complete
revolution.

α

α

When the Earth has made one complete revolution
with respect to the stars, it has also moved a certain
angle (α) in its orbit around the Sun, and the Sun
will no longer be in the same position, the discrep-
ancy being given by the same angle. If the Earth
rotates in the same direction as it orbits around the
Sun (as it does, both rotations are counter-clockwise
when seen from the Northern part of the hemisphere
(from above)) then it is behind and has to rotate α
more. If the directions are opposite it is ahead.

The angle α is approximately 1/365 of a complete revolution, and expressed in
hours 24h/365 ∼ 4m which has to be added to get the full 24 hour period of a
complete rotation with respect to the Sun.

The position of the sun is not fixed visavi the stars, although its positions
among the stars is not easy to directly observe because the brightness of the sun
blots them all out except during truly exceptional circumstances such as given
by a total eclipse. But this does not prevent us from measuring its position
nevertheless which will be technically a bit more complicated. The sun will
trace a great circle with respect to the fixed stars and complete one revolution
in one year. As seen from the Northern hemisphere (i.e. if the Polar star is
up) the rotation with respect to the fixed stars will be counter-clockwise. Mor
succinctly the movement will be in the opposite direction of the apparent motion
of the stars. Thus if the Earth would stop rotating, and thus the stars fixed on
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the sky, the sun would rise in the West and set in the East, making a complete
revolution in one year. Roughly there are 360 days in a year, and 360o in a
complete revolution. This means that in one day it moves about one degree.
Instead of using degrees we can divide the circle in 24 hours, one hour will then
correspond to 15o and thus each degree to 4 minutes. Those four minutes are
the same as the four minutes the rotational period is short of 24 hours.

The Ecliptic

ϕ

ϕ
The great circle the sun transverses will make an
angle (ψ) with the (celestial) equator and is called
the ecliptic. The plane of the equator is normal to
the axis of rotation, the plane of the ecliptic is the
same as that of the orbit of the earth. The angle is
about 23.5o. When the ecliptic is on the upper part
of the celestial sphere, the declination of the sun is
positive. Its maximal value (23.5o) is achieved at
midsummer, its lowest at midwinter.

The two points of crossings are refered to as the equinoxes. The declination
being zero, means that day and night will be of equal length. One will be
the spring equinox, the other the autumn. In general we can compute the
declinationdepending on the time of the year. This is one particular aspect of
computing the separation of two great-circles knowing the angle between them,
which is clearly the angle between their normals.

Ρ

ΩΚ

ϕ
Ο

In terms of the angle α given by KOP we want to
compute the angle (δ(α)) given by POΩ. The length
KP is easily computed as sin(α) hence the length
PΩ is given by sin(α) sin(ψ) where ψ is the angle
PKΩ given by the angles of the two great circles,
and hence the desired angle will satisfy sin(δ(α)) =
sin(α) sin(ψ). Note that the angle given by KOΩ
will not be the same as KOP which will account for
the irregular movement of the sun along its path.

Ρ

ΩΚ

ϕ

Ο
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Example: This might be worth a digression.

Denote the angle KOΩ with θ(α) note that θ(α) = α for α =
−π/2, 0, π/2. Consulting the picture on the previous page we see
that |KΩ| = sin(α) cos(ψ) while |OK| = cos(α) from which we con-
clude that

tan(θ(α)) = tan(α) cos(ψ)

As tan(t) is an increasing function for −π/2 < t < π/2 and cos(ψ) <
1 we see that if α > 0 then θ < α and when (α < 0 we have θ > α. If
the Sun would move at a uniform speed along its path, its projection
onto the celestial equator does not, and it is really movement along
that, which amounts to longitudinal change, that keeps time. Let us
now compute the maximal discrepancy θ(α)−α. Differentiating we
want to find when θ′(α)− 1 = 0. Using the identity above we get

(1 + tan2(θ))θ′ = (1 + tan2(α)) cos(ψ)

and thus
(1 + tan2(θ)) = (1 + tan2(α)) cos(ψ)

the left hand side can be replaced by (1 + tan2(α) cos2(ψ)) allowing
us to solve for tan(α) and obtain

tan(α) =
1

√

cos(ψ)

and hence
tan(θ) =

√

cos(ψ)

The identity tan(x) tan(π/2 − x) should be obvious from the ba-
sic cos(π/2 − x) = sin(x) and vice versa, and can be rewritten as
tan(π/4 + x) tan(π/4 − x) = 1 we can thus write θ = π/4 − x, α =
π/4 + x for some x > 0 and we are interested in 2x. We can write
down the first terms for the Taylor expansion

tan(π/4 + x) = 1 + 2x+ 2x2 +
8

3
x3 + . . .

while cos(ψ) = 0.91706.. and
√

cos(ψ) = 0.957633.. and hence
1√

cos(ψ)
= 1.04424.. hence we can approximate x by 0.02212.. (this

will overshoot by an amount of 2 × 5 × 10−4 + .. ∼ 10−3 which we
will choose to ignore. Thus the discrepancy is about 0.044.. which
corresponds to about 2.52..o or about ten minutes the sun will be
off. This is the geometrical part of the so called ’equation of time’
which measures how much the sun is of time, meaning that it does
not always culminate at noon as it is supposed to do. The geomet-
rical part is due to the inclination of the axis, the more the axis is
inclined the larger the discrepancy. Then there is also a dynamic
element, which is due to the elliptic orbit, and thus that the Sun
does not travel along the Ecliptic at a uniform speed.
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The inclination of the earth’s axis is rather big, which will mean that there
are marked seasonal variations for latitudes close to the poles. Inside the arctic
circles the sun will be circumpolar for some time of the year. This clearly means
that there is sunlight around the clock. The closer to the pole, the longer the
period of extended lightness (or darkness) reaching a maximum of half a year
at the poles.

The determination of the exact positions of the equinoxes is very important
in all basic astronomy because they are well-defined positions on the celestial
equator and define among other things the duration of a year. The longitude
that passes through the vernal (spring) equinox is by definition set as the zero
one, and then the meridans are counted from that. This system of spherical
co-ordinates is the standard one to give the positions of celestial objects which
will then be independent of time, which is of course a great advantage. Given
the co-ordinates of a star, we can predict its position on the celestial sphere at
any time and at any location on earth.

Thus the position of a star is given by its declination (latitude) (δ), i.e. its
height above the celestial equator, and by its so called Right ascension (lon-
gitude) (R) which is counted from the vernal (spring) equinox in a counter
clockwise direction.

ϕ

90

120

150
180

210

240

270

300

330
0

30

60

90

R

δ

The Right Ascension is normally given not in degrees but in hours, where
24 hours correspond to 360o. Thus 1 h correspond to 15o and 4 minutes to 1o

as noted before. The reason for this terminology is that objects on the celestial
equator will be above the horizon half the time and below half the time. If
an object on it with right ascension 0 will rise at a certain time, one with right
ascension R will rise R hours later. More generally the time difference will apply
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to all objects when culminations are concerned. We will of course approximate
the rotation time with 24 hours which involves an error of about 0.3%. The Right
Ascension of the Sun will increase during the year. If we approximate the year
with 360 days, and each month with 30 days, the position of the sun will increase
two hours for each month (and 4 minutes for each day as we have remarked
above). For astronomical reasons it would be convenient if the year started
on March 1 with the vernal equinox, as was the case previously (September,
October, November and December being the seventh, eighth, ninth and tenth
month respectively). Now there is a shift, the Sun will be at the vernal equinox
around March 20, while the autumnal equinox will be around September 23, the
summer and winter solstices will be approximately around June and December
21 (see the table at the end of the section). This would correspond to 0, 6, 12
and 18 hours but not quite. The durations of summer and winter (positive and
negative declination of the Sun on the northern hemisphere) are not the same,
something which was observed already in antiquity. The reason for this is that
the earth travels in an elliptical orbit, in which the sun is not in the center, and
the velocity varies. The closest approach is in January, i.e. during winter on the
northern hemisphere, and Earth will spend less time in the (northern) winter
part of the year than in the summer. The discrepancy is a couple of days.

More remarkably though was that the Greeks (Hipparchos) discovered that
the position of the equinoxes moved. The movement is slight, only some 50′′

a year, and it takes some 26000 years for this to make a complete revolution.
In fact the axis of the earth rotates around a line perpendicular to the orbital
plane, thus the pole position traces out a circle on the sky. This has practical
consequences. There is a convention to change the co-ordinates every 50 years,
the last change being made in 2000 (before that we had 1950). One talks about
different epochs. One may then have a different co-ordinate system, in which
the ecliptic serves as the equator (with some, I believe, arbitrary convention
as to the zero meridan) this is referred to as the ecliptic (as opposed to the
equatorial) system. Given the ecliptic co-ordinates, the equatorial co-ordinates
can easily be computed for each epoch.

The precession of the equinoxes presents a problem of what should be the
definition of a year. One definition of a year would be the duration of a complete
revolution of the year as regards the fixed stars. But that would mean that
equinoxes, and hence mid-summer and mid-winter would drift over the years, so
in 13’000 years, mid-summer would appear in December. Thus it makes more
sense, as noted above, to measure the period between two vernal equinoxes.
There will be a discrepancy of about 1/26000 of a year, which is roughly 1000
seconds, i.e. about a quarter of an hour.

Now there is no integral multiples of days in a year, which is an inconvenience
when you make calendars. As the length of a year is roughly 365 and a quarter
day, we have the convention of four years cycles, with one leap year. This is
the Julian calender. Each year we get a quarter of a day behind, which is
compensated each fourth year by adding an extra day to catch up. This is the
well-known Julian calender. Now the discrepancy is not exactly a quarter. By
compensating with a day each four years we overdo it. In fact in a 400 year
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period we overdo it by three days. In about 2000 years we have a discrepancy
of about two weeks. This is not considered acceptable and in the 16th century
the Gregorian calender was introduced making the extra stipulation that years
divisible by 100 are only leap years if they are divisible by 400, thus 1900 was
not a leap year, although 2000 was. Of course nothing is perfect the Gregorian
calender will eventually have to be modified. More precisely The Gregorian
year is 365.2425 days (as opposed to the 365.25 days of the Julian year) If we
multiply this by 400 we get 400 × 365 + 97 thus we need 97 leap years in the
period. But the mean tropical year is 365.24219. This means that in 400 years
the Gregorian would overshoot by 0.124 days. This is close to 1/8, thus in
every 3200 years we should lop off a single day. If we would not do this for a
100’000 years, the seasons would be off by a month. Hardly surprising that the
astronomers stick to the Julian calendar.

Below is a table of the times for the equinoxes and the solstices, meaning
when the Sun actually passes through those points on the Ecliptic

Year Ver. Equinox Sum. Solstice Aut. Equinox Win. Solstice
March June Sept ember Dec ember

2010 20 17:32 21 11:28 23 03:09 21 23:38
2011 20 23:21 21 17:16 23 09:04 22 05:30
2012 20 05:14 20 23:09 22 14:49 21 11:12
2013 20 11:02 21 05:04 22 20:44 21 17:11
2014 20 16:57 21 10:51 23 02:29 21 23:03
2015 20 22:45 21 16:38 23 08:21 22 04:48
2016 20 04:30 20 22:34 22 14:21 21 10:44
2017 20 10:28 21 04:24 22 20:02 21 16:28
2018 20 16:15 21 10:07 23 01:54 21 22:23
2019 20 21:58 21 15:54 23 07:50 22 04:19
2020 20 03:50 20 21:44 22 3:31 21 10:02

Note that we have an approximate shift of six hours every year, and after
each leap-year there is back-wards shift of 24 hours which in most cases means
that the date changes by one day. In particular the length of a year varies from
year to year. Notice that there is a drift of 45 minutes every four years at the
times of the vernal equinoxes. In 400 years this corresponds to 75 hours, which
is roughly three days, hence the need for the Gregorian calendar.

Length of Day-Light

The length of day-light depends on the time of the year and the latitude. In
summers days are longer than nights, and in winters shorter than nights. At the
equinoxes they are the same length. At the equator night and day are equally
long throughout the year.

The length of light depends on the declination δ of the sun. In fact we have
computed it as arccos(− tan(L) tan(δ))/π where L is the latitude. We have also
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computed how δ varies with the time of the year. If t gives time counting from
the vernal equinox (roughly 1o a day) we have

sin(δ(t)) = sin(t) sin(ψ)

This gives cos(δ(t)) =
√

1− sin2(t) sin2(ψ) allowing us to compute tan(δ(t)).

At the horizon of Gothenburg we can graph it as follows.
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The Sun and Sirius

As noted at the horizon of Gothenburg Sirius will be above the horizon for
about a third of the time, i.e. on the average of 8 hours a day. The sun is
above the horizon on the average of 12 hours a day, regardless of latitude. To
each position of the Sun there will be an antipodal position, and the day lights
hours of one will be the complement of those of the hours, using the rotation
days. Thus at Gothenburg Sirius will be visible on the average of 4 night hours
during the day. It will not be observable in the summer though, as then the
right ascension of the Sun is close to it, but quite visible in the winter when the
Sun is on the opposite part of the sky. Circumpolar stars will below the Arctic
circle be visible the year round, while those between will more or less depend
on the time of the year to be seen. The Orion is a typical constellation of the
winter.

We can now combine the graph above with the durations of Sirius being
above the horizon to get the followign
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We see that at the end of September Sirius sets at sunset, in early November

it rises at sunset and the peak period of watching is from that time until mid
February, when the Sun and Sirius are never simultaneously above the horizon
and the star can be seen for a full 8 hours during the night.
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