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RKUANTUN MECHANICS

LINEAR VECTOR SPACES
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mathematical foundation

"POSTULATES”
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input from experiments



Matrix representation
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What is all +his 900d fOree?

3 (of the 4) postulates of quantum
mechanics (roughly) say that

1. PHYSICAL STATES —> VECTORS IN A LINEAR

(infinite-dimensional) VECTOR
SPACE (=Hilbert space)

2. PHYSICAL OBSERVABLES —> OPERATORS IN THIS
SPACE

3. OUTCOME OF A MEASUREMENT—> EIGENVALUES

TO THE
CORRESPONDING
OPERATOR



Linear operator —{)_

a rule for transforming a given vector |V> into another |\’
Nvy> = v
VAL = <V
e satisfying the linearity rules"
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The order of operators is important!
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Also note
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Matrix representation of linear operators . \/
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o Examples: the identity operator ’l_l__
Y) the projection operator W = \i><i|

projects out the component of a vector along |




<
[0
/ :m.
7
V4
7
7/‘
—
———»—.—
my
/
47/
/<
7
e
my

\\¢QJ N\Jq\
E/ e i \ ’
N
\ )
N o,
SN
\ \

Matrix elements of the projection operator
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e Products of operators (L /\\ A QUi
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Adjoint of an operator

dc
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Taking the adjoint of .
Reverse the order of all factors and make the replacements
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A
@ Def. Hermitian operator: (1. = ).
Def. anti-Hermitian operator ¢ % = - N
: + o N
Def. Unitary operator: (L4 X~ = | = L =zv

Y
Theorem Unitary operators preserve inner products

Unitary operators are generalizations of “’rotation operators”

Theorem The columns (or rows) of a unitary matrix W form
an ON basis in the (sub)space in which W acts.
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The eigenvalue problem
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Eigenkets \V) to . Hlvy = w(vd

Example: the projection operator 1 - I(PV = Vdev )

ElQeNweT¢ .{ & \V>'$ , E\QENVALUE = 14

Another example: a rotation operator in V/ : ( C )
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that’s it? No, there are two more! ’
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The characteristic equation v>e
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characteristic polynomial

:} every operator in V/  hasn eigenvalues
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Check: our rotation operator in V) :
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If the spectrum is non-degenerate the eigenvalues can be used
to label the eigenvectors
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{Liw> = w(w>



Theorem The eigenvalues of a Hermitian operator are real

Theorem To every Hermitian operator L there exists (at least) a
basis consisting of its ON eigenvectors. £ is diagonal
in this basis and has its eigenvalues as its diagonal
elements.

Theorem The eigenvalues of a umtary operator are complex
numbers of unit modulus”

Theorem The eigenvectors of a unitary operator are mutually
orthogonal (assuming no degeneracy).

Diagonalization of Hermit :

Every Hermitian operator on V/ <) can be dzagonalzzed by a
unitary change of basis



Simultaneous diagonalization of two Hermitian operators:

Theorem [\, A =0 o there exists (at least) a basis of common
eigenvectors that diagonalizes both
~z and A

Simple proof if at least one of the operators is non-degenerate.

What if both operators are degenerate? The theorem is still OK but the
eigenbasis is not necessarily unique. In general, for finite-dimensional

vector spaces we can always find additional operators that commute with each
other and together nail down a unique, common eigenbasis. In QUANTUM
MECHANICS we assume that such a complete set of commuting operators
(which together nail down a unique, common eigenbasis) exists also if the
vector space is infinite-dimensional.



The ”postulates” of (non-relativistic)
quantum mechanics

L

The state of a particle at any given
time is specified by the two variables
x(t) and p(t), i.e. as a point in a two-
dimensional phase space.

IL.

Every dynamical variable W isa
function of x and p: W = w (x,p),

We ueed q
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II1.

If the particle is in a state given by

X and p, the measurement of the
variable w will yield a value w (x,p),
The state will remain unaffected.

IV.

CLASSICAL TIME EVOLUTION

Quantum mechanics
I.

The state of the particle is
represented by a vector \AY (1)
in a Hilbert space.

IL.

The independent variables x
and p of classical mechanics
are represented by Hermitian
operators X and P with the
following matrix elements in
the eigenbasis of X:

<[ X 1x'> mxIx=x')
x| PIxD = -3 (x-x"

The operators corresponding to
dependent variables w(x,2)
are Hermitian operators

DAXPR) = wlx—>X, 55 P)
111

If the particle is in a state |/
a measurement of the variable ?

(corresponding to) {0,

will yield one of the eigenvalues
& , with propability

Pw)e {¢WIA¥I|.The state

of the system will change from

W) to \w) as a result of the

measurement.

IV.

QUANTUM TIME EVOLUTION
CLaTeER)



Possible oucomes of an experiment measuring W ?

Clagsically

Parrticle in a state (X, p) —> w (<, P)

Quantum
Particle in a state \~"/(£))

j four-step program (<~ postulates |- 11l

step 1: construct L = wix—=> X, p—=>1)

step 2: find the eigenkets |w;) and eigenvalues w; of (L

N

step 3: expand |A» in this basis :
Wy s L lwpamii vy

step 4: the probability P(w) of measuring w; :

'l
Play ~ [ty | = <pescw A >

= <L, 1)



