Quantum Mechanics Second lecture Sept. 3 2003

Matrix representation

$$|V\rangle \longrightarrow \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \qquad \text{Basis} \quad |1\rangle = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}, \dots \quad |n\rangle = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

$$\langle V | \longrightarrow \langle V_1^* V_2^* \dots V_n^* \rangle$$
 $\langle V | \longrightarrow \langle V_1^* V_2^* \dots V_n^* \rangle$
 $\langle V | \longrightarrow \langle V | \rangle$
 $\langle V | \rangle$

Expansion in an ON basis

$$|V\rangle = \sum_{i} v_{i}|_{i}\rangle$$

$$\langle j|V\rangle = \sum_{i} v_{i} \langle j|_{i}\rangle = v_{i}$$

What is all this good for ...?

- 3 (of the 4) postulates of quantum mechanics (roughly) say that

- 3. OUTCOME OF A MEASUREMENT→EIGENVALUES
 TO THE
 CORRESPONDING
 OPERATOR

Linear operator \mathcal{L}

a rule for transforming a given vector $|V\rangle$ into another $|V\rangle$

$$\langle \Lambda_1 | V \rangle = \langle \Lambda_n | V \rangle$$

- satisfying the "linearity rules"
- THE ACTION ON THE BASIS VECTORS ARE KNOWN,
 THE ACTION ON ANY VECTOR IN THE SPACE IS DETERMINED
- The order of operators is important!

$$\Lambda \Lambda |V\rangle = \Lambda (\Lambda |V\rangle) = \Lambda |\Lambda\rangle$$

$$\Lambda \Lambda - \Lambda \Lambda = [\Lambda, \Lambda]$$

$$\Lambda \sim COMMUTATOR$$

Useful identities

$$[VU'\Theta] = V[U'\Theta] + [V'\Theta]U$$

$$[U'V\Theta] = V[U'\Theta] + [U'V]\Theta$$

Also note

$$\Omega^{-1}\Omega = \Omega^{-1} = 1$$

$$\Omega^{-1} = \Lambda^{-1}\Omega^{-1}$$

$$|V\rangle \longrightarrow \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} \langle 1|V\rangle \\ \langle 2|V\rangle \\ \vdots \\ \langle n|V\rangle \end{pmatrix}$$

$$\langle j|\Omega|i\rangle = \langle j|i'\rangle \equiv \Omega_{ji}$$
 $\langle j|\Omega|i\rangle = \langle j|i'\rangle$
 $\langle j|\Omega|i\rangle = \langle j|i'\rangle$

Examples: the <u>identity operator</u> 11

2) the projection operator $\mathbb{R}_{i} = |i\rangle\langle i|$

projects out the component of a vector along |; >

RESOLUTION

OF THE

$$11 = 2 | 1 > < i | = 2 | P$$
 $10 \in NTT$

cf. optical polarizers!

$$\widehat{\Pi}_{i}\widehat{\Pi}_{j} = ||i| > \langle i||j| > \langle j|| = \delta_{ij}|\widehat{\Pi}_{j}|$$

Matrix elements of the projection operator

ONE MORE IMPORTANT EXAMPLE: SPIN OPERATORS

• Products of operators $(\Omega / 1)_{ij} = \sum_{k} \Omega_{ik} / 1_{k}$

Adjoint of an operator

$$\mathcal{L}_{1} = |\mathcal{L}_{1} \rangle \longleftrightarrow \langle \mathcal{L}_{1} \rangle = \langle \mathcal{L}_{1} \rangle$$

$$\Rightarrow \langle \mathcal{L}_{2} \rangle = |\mathcal{L}_{2} \rangle$$

$$\Rightarrow \langle \mathcal{L}_{3} \rangle = |\mathcal{L}_{3} \rangle \Rightarrow \langle \mathcal{L}_{4} \rangle = \langle \mathcal{L}_{3} \rangle \Rightarrow \langle \mathcal{L}_{4} \rangle \Rightarrow \langle \mathcal{L}_{3} \rangle \Rightarrow \langle \mathcal{L}_{4} \rangle \Rightarrow \langle \mathcal{L}_{4} \rangle \Rightarrow \langle \mathcal{L}_{5} \rangle \Rightarrow \langle \mathcal{L$$

$$= \langle i| v_1 | i \rangle_{*} = \langle v_1 | v_2 | i \rangle_{*}$$

$$(v_+)^{!!} = \langle v_1 | v_2 | v_3 | v_4 | v_4 | v_4 | v_4 | v_5 | v_4 | v_4 | v_4 | v_5 | v_5 | v_5 | v_6 | v_$$

Taking the adjoint of an equation:

Reverse the order of all factors and make the replacements

<u>Def.</u> anti-Hermitian operator : $\Lambda^+ = -\Lambda$

Def. Unitary operator: $UU^{+} = 11 = 0$

H

Theorem Unitary operators preserve inner products

Unitary operators are generalizations of "rotation operators"

Theorem The columns (or rows) of a unitary matrix U form an ON basis in the (sub)space in which U acts.

The eigenvalue problem

Eigenkets
$$|V\rangle$$
 to Λ : $\Delta |V\rangle = \omega |V\rangle$

Example: the projection operator
$$\Omega = |V\rangle \langle V|$$
 $E(CENNETS) \left\{ \langle V\rangle \right\}$
 $E(CENNALUE = 1)$

Another example: a rotation operator in $\vee l^3$ (\subset)

$$\Lambda = R\left(\frac{\pi}{2}i\right)$$

$$\Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$|i\rangle = |i\rangle$$

$$|i\rangle = |i\rangle$$

$$U(3) = -15$$

$$U(3) = -15$$

that's it? No, there are two more!

The characteristic equation

$$U(\Lambda) = M(\Lambda) \Rightarrow (U - M\pi)(\Lambda) = 0$$

CONDITION FOR NON-ZERO EIGENVALUES

characteristic polynomial

=> every operator in \vee has n eigenvalues

Check: our rotation operator in $\sqrt{(c)}$!

Check: our rotation operator in
$$\bigvee(CC)$$
!

$$\mathcal{L} = \mathcal{R}\left(\frac{\pi}{2}i\right) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \det(\mathcal{R} - \omega \mathcal{I}) = \begin{pmatrix} 0 & -\omega & -1 \\ 0 & 1 & \omega \\ 0 & 1 & \omega \end{pmatrix}$$
Chiaracteristic issue issue is $(1-\omega)(\omega^2+1) = 0 \Rightarrow \omega = 1, \pm i$

If the spectrum is non-degenerate the eigenvalues can be used to label the eigenvectors

Theorem The eigenvalues of a Hermitian operator are real

Theorem To every Hermitian operator Ω there exists (at least) a basis consisting of its ON eigenvectors. Ω is diagonal in this basis and has its eigenvalues as its diagonal elements.

Theorem The eigenvalues of a unitary operator are complex numbers of "unit modulus"

Theorem The eigenvectors of a unitary operator are mutually orthogonal (assuming no degeneracy).

Diagonalization of Hermitian operators:

Every Hermitian operator on $V^{(c)}$ can be diagonalized by a unitary change of basis

Simultaneous diagonalization of two Hermitian operators:

Theorem $[\Lambda, \Lambda] = 0 \Rightarrow$ there exists (at least) a basis of common eigenvectors that diagonalizes both and Λ

Simple proof if at least one of the operators is non-degenerate.

What if both operators are degenerate? The theorem is still OK but the eigenbasis is not necessarily unique. In general, for finite-dimensional vector spaces we can always find additional operators that commute with each other and together nail down a unique, common eigenbasis. In QUANTUM MECHANICS we assume that such a complete set of commuting operators (which together nail down a unique, common eigenbasis) exists also if the vector space is infinite-dimensional.

The "postulates" of (non-relativistic)

quantum mechanics

Classical mechanics

I.

The state of a particle at any given time is specified by the two variables x(t) and p(t), i.e. as a point in a two-dimensional phase space.

II.

Every dynamical variable ω is a function of x and p: $\omega = \omega (x,p)$.

We need a

fliplit ===

III.

If the particle is in a state given by x and p, the measurement of the variable ω will yield a value $\omega(x,p)$. The state will remain unaffected.

IV.

CLASSICAL TIME EVOLUTION

Quantum mechanics

I.

The state of the particle is represented by a vector \ペ(も)〉 in a Hilbert space.

II.

The independent variables x and p of classical mechanics are represented by Hermitian operators X and P with the following matrix elements in the eigenbasis of X:

$$\langle x|X|x'\rangle = x\delta(x-x')$$

 $\langle x|P|x'\rangle = -ih\delta'(x-x')$

The operators corresponding to dependent variables $\omega(x_1, y_2)$ are Hermitian operators $\Omega(X_1, y_2) = \omega(x \rightarrow X_1, y_2 \rightarrow y_2)$

III.

IV.

QUANTUM TIME EVOLUTION

Classically

Parrticle in a state $(x, p) \longrightarrow \omega(\infty, p)$

Quantum

Particle in a state $\langle \psi(t) \rangle$

1

four-step program (← postulates | - |||)

step 1: construct
$$\Omega = \omega(x \rightarrow X, \rho \rightarrow P)$$

step 2: find the eigenkets $|w_i\rangle$ and eigenvalues ω ; of \triangle

step 3: expand $|\psi\rangle$ in this basis:

step 4: the probability $P(\psi)$ of measuring ω_{t} :

$$P(w_i) \sim |\langle w_i | \psi \rangle|^2 = \langle \psi | w_i \rangle \langle w_i | \psi \rangle$$

= $\langle \psi | P_{w_i} | \psi \rangle$