

	Physical V	apor Deposi	tion (PVD)	Chemical Vapor
	Evaporation	Sputtering	Pulsed Laser Deposition	CVD, MOCVD, PECVD,
Production of species	Thermal energy	Momentum transfer	Thermal energy+	Chemical reaction
Deposition rate	High, 10 kÅ/s	Low	Moderate	Moderate, 2.5 kÅ/s
Species	Atoms & ions	Atoms & ions	Atoms, ions & clusters	molecules →atoms
Energy of species	Low, 0.1-0. <mark>5</mark> eV	High, 1-10 eV	Low to high	Low, high for PECVD
Complex objects	Shadowing	Non-uniform thickness	Shadowing, non-uniform	Good coverage
Scalability to large wafers	yes	yes	no	yes

		and the owner where the		
• Gas Ki	netics	$\lambda = \frac{1}{\sqrt{2\pi n}}$	$\frac{k_{\rm B}T}{d^2} = \frac{k_{\rm B}T}{\sqrt{2}\pi P d^2}$	-,
		d : molecul	lar diameter,	
Have a g	good vacuum !	n:concent	ration of the g	as,
		P: pressure	e, T : temperati	ure
P (mbar)	λ (cm)	Collisions (1/s)	Impinging flux (1/cm ² s)	Monolayer /s
1	7·10 ⁻³	7·10 ⁶	3·10 ²⁰	3·10 ⁵
10 ⁻³	7.10 ⁰	7·10 ³	3·10 ¹⁷	3·10 ²
		7 100	2,1014	3.10-1
10 ⁻⁶	7·10 ³	7.10	3.10.1	010

	Ceramic Films Deposited by Pulsed	Laser Methods
Property	Applications	Materials
High-temperatur superconducti	re Microwave filters and delay vity lines, digital electronics, sense	YBagCu ₃ O ₇ , Tl ₂ Ca ₂ Sr ₂ Cu ₃ O ₂₀ ms Nd ₁ a ₃ Cu ₀ (aCuO ₄
Ferroelectricity	DRAM capacitors, nonvolatile RAMS, optoslestronics, microwave devices	 Pb(Zr)TiO₂, (Sr, Ba)TiO₃, (Sr, Ba)Nb₂O₆, LiNbO₃
Forrimagnetism	Circulators, phase shifters, magnetic recording, antennas	BaFe ₁₂ O ₁₂ , Y ₂ Fe ₃ O ₁₂ , (Mn, 2n)Fe ₂ O ₄ , Li ₂ FeO ₄
Electrochromic e	effects Optical modulators, sunroofs, sensor protection	WO3, MoO3, V2O5
Electro-optical c	ficets Transparent conductors, solar energy, photovoltaics	F-doped ZnO ₂ , Ia ₃ O ₃ /SnO ₃ , (La, Sr)CoO ₃
Piczocketricity	Microelectrical-mechanical (MEM) devices	Pb(Zr)TiO3
Giant magnetore	esistance Magnetic recording head field sensors	(La, Ca)MaO,
Thermal and cor stability	rrosive Oxidation and thermal protection coatings for turbine blades	Y-ZrO ₂ , MgAl ₂ O4
Friction and was	ar Hard, low-friction, wear-resistant coatings	MoS ₂ , BN, SiC, diamond-like carbon
Biocompatibility	Prostheses, hin/knee implants	Hydroxylapatite, Al.,O.

al		1115	
	Thermy	d CVD Films and Coatia	tian
Deposited material	Substrate	Input reactants	Ucposition temperature (°C)
Sú	Singlo-crystal	SiCl ₂ H ₂ , SiCl ₂ H, or SiCl + H.	1050-1200
Si Ge	Single-crystal Ge	$SiH_4 + H_2$ SiH_4 + H_2 GirCL or GeH_+ H_3	600700 600900
Co Ac	Single-crystal GuAs	(CH) Gu+AsH.	650-750
InB	Single-crystal InP	(CFL)-In+PH-	725
SiC	Single-crystal Si	SiCL. tohane, IL.	1100
ATN	Samhire:	AICL, NH., H.	1000
In ₂ O ₃ :Sn	Glass	In-chelote, (C ₄ H ₂) ₂ Sn(OOCH ₃) ₂ , H ₂ O, O ₂ , H ₂	500
ZnS	GaAs, GaP	Zn, H28, H2	825
CalS	GaAs, sapphire	Cd, H ₂ S, H ₂	690
AL ₂ O ₃	Si, cemented carbide	$\begin{array}{c} \operatorname{Al}(\operatorname{CH}_3)_3 + \operatorname{O}_2, \\ \operatorname{AlCl}_3, \operatorname{CO}_2, \operatorname{H}_3 \end{array}$	275-475 850-1108
SiO _a	si	SiH ₄ +O ₂ , SiCl ₂ H ₂ +N ₂ O	450
Si_M_	SiO ₂	SiCl ₂ H ₂ +NH ₃	750
TO	Quartz	$Ti(OC_2H_5)_4 + O_2$	450
TIC	Steel	TiCl ₄ , CH ₄ , H ₂	1990
TIN	Steel	TiCl ₄ , N ₂ , H ₂	1000
BN	Steal	BCI,, NH ₃ , H ₂	1000
TiĐ.	Steel	TiCL, BCI3, H2	> 900

	Dimensio	onless Parameter Groups in	CVD	1. Kaj -
			Typical r	nagnitude
Name	Definition	Physical interpretation	APCVD	LPCVD
Knudsen	$Kn = \lambda/L$	Ratio of gas mean free path to characteristic length	10 ⁻⁶ -10 ⁻⁵	10-3-10-2
Prandtl	$\Pr = C_p \eta / K$	Ratio of momentum diffusivity to thermal diffusivity	~0.7	~0.7
Schmidt	$Sc = C_p \eta / D$	Ratio of momentum diffusivity to mass diffusivity	1-10	1–10
Reynolds	$\operatorname{Re} = \rho v L / \eta$	Ratio of inertia forces to viscous forces	10 ⁻² -10 ²	10 ⁻² -10 ²
Peclet (mass)	$Pe_m = ReSc$	Ratio of convective mass flux to diffusive mass flux	10 ⁻¹ -10 ³	$10^{-1} - 10^3$
Grashof (thermal)	$Gr_t = \frac{g\rho^2 L^3 \Delta T}{\eta^2 T_r}$	Ratio of buoyancy force to viscous force	10 ² -10 ⁷	0-10
Rayleigh	Ra = GrPr	Ratio of buoyancy force to viscous force	10 ² -10 ⁷	0-10
Damkohler (gas phase)	$Da_{g} = \frac{\dot{R}_{g}L}{C_{in}v}$	Ratio of chemical reaction rate to bulk flow rate	10-3-103	10 ⁻³ -10 ³
Damkohler (surface)	$\mathrm{Da}_{\mathrm{s}} = \frac{\dot{R}_{\mathrm{s}}L}{C_{\mathrm{in}}D}$	Ratio of chemical reaction rate to diffusion rate	10 ⁻³ -10 ³	10 ⁻³ -10 ³
Arrhenius	$Arrh = \frac{E}{RT_r}$	Ratio of activation energy to potential energy	0-100	0-100
Gay-Lussac	$Ga = \Delta T/T_r$	Ratio of temperature difference to reference temperature	1–1.3	0.6-1

	Tł	nerma	al CV	D		
	Metalo "M	rganic CVD OCVD"			Laser-Enhanced CV "LECVD"	D
MOCVD Precurs	ors for Assorted Me	etals and Electrocerami	c Metal Oxides	n li e	FEED	
Metals ^a	Alkoxides	β -Diketonates ^c	Alkyls		GASES	· · · · 7.08cF
Ag Al Au	Cr(OP-)	Ag(acac) Me ₂ Au(fhac)	AIMe ₃ , AlEt ₃	SPOT		
Cu Pt	Cu(OBu) ₄	$Cu(niac)_2$, $Cu(acac)_2$ Pt(acac).	C.H.Pt(Me),	SUBSTRATE		
r t Masad anidad		1 ((acat))2	- 3 3- 1(73		PYROLYSIS	
TiO ₂ ZrO ₂ Ta ₂ O ₃ , Nb ₂ O ₃ (Ba, Sr)TiO ₃ Pb(Zr, Ti)O ₃ , (Pb, La)(Zr, Ti)O ₃ Pb(Mg)NbO ₃ (Ni, Zn)Fe ₂ O ₄ YBa ₂ Cu ₃ O _{7-x}	Ti(OR), [b] Zr(OR), Ta(OE), [c], Nk(OE), Ti(OR), Ti(OR), Zr(OR), Ti(OR), Ti(OR), ti(OR), Nk(OE),	Zr(acac) ₄ , Zr(thd) ₄ Ba(thd) ₂ , Ba(hfac) ₂ , Sr(thd) ₂ , Pb(fod) ₂ , Zr(thd) ₄ , La(thd) ₃ Pb(thd) ₂ , La(thd) ₃ , Nb(thd) ₄ , Na(thd) ₂ , Nb(thd) ₄ , Ni(thd) ₇ , Ni(thd) ₃ , Ni(acac) ₃ , Zn(thd) ₂ , Zn(acac) ₃ , Fe(thd) ₃ , Fe(acac) ₃ , Ba(hfac) ₃ , Cu(thd) ₂ , Cu(thfac) ₂	PbEi4. (neopentoxy)PbEi3	DEPOSITED FILM Figure 6-17 (a) Pyro (the permission of Acau	REACTANT GASES SUBSTRATE PHOTOLYSIS PHOTOLYSIS PHOTOLYSIS Visic and (b) photolytic laser-induced chemical Deposition, other by M. L. Hichman and K. demic Press, Ltd., and Professor K. F. Jensen,	LASER

	Pla	ısma-	Enhanced	d CVD
PECVD F	ilms, Source Gases, a Temperatures	and Deposition	_	
Film	Source gases	Deposition temperature (°C)	Plasma can lower deposition <i>T</i>	
Elemental	en distante diseñen en el	e subsets of the		
Al	AlCl ₃ -H ₂	100-250		
a-B	BCl ₃ -H ₂	400		T.C. CYLINDER
a-C	C _n H _m -H ₂ /Ar	25-250		
a-Si	SiH4-H2	300		
c-Si	SiH4-H2	400		
Oxides				(+Ar OR)
Al ₂ O ₃	AlCl ₃ -O ₂	100-400		(N ₂ /
SiO ₂	SiCl ₄ -O ₂	100-400		Reinberg-type cylindrical radial-flow plasma reactor
TiO ₂	TiCl ₄ -O ₂	100-500		MICROWAVE 2.45 GHz
Nitrides				GAS (1) RECTANGULAR
AIN	AlCl ₃ -N ₂	<1000		N ₂ , etc.
BN	$B_2H_6-NH_3$	300-700		WATER
	BCl3-NH3/Ar	300-700		
Si ₃ N ₄	$SiH_4 - NH_3 - N_2$	25-500	ECR ve RE	
TiN	$TiCl_4-N_2-H_2$	100-500	LOIT VSTU.	COILS
Carbides			• denser discharge	
B4C	$B_2H_6-CH_4$	400	 lower pressures 	
BCN	$B_2H_6-CH_4-N_2$	~25	 higher degree of 	GAS (2) PLASMA
	C ₈ H ₁₈ BN	250	ionization	SIH4 TISTREAM WINDOW
SiC	SiH4-C"H"	140-600	absence of electrodes	SPECIMEN
TiC	TiCl ₄ -CH ₄ -H ₂	400-900		
Borides				SYSTEM
TiB ₂	TiCl ₄ -BCl ₃ -H ₂	480-650	E Dependition	CR plasma deposition reactor. (From S. Matuso, in Handbook of Thin Film

-	SA	F	EL,	Y	
_	Haza	rdous Gase	s Employed	in CVI)
Gas	Corrosive	Flammable	Pyrophoric	Toxic	Bodily hazard
Ammonia (NH ₃)	•			٠	Eye and respiratory irritation
Arsine (AsH ₃)				٠	Anemia, kidney damage, death
Boron trichloride (BCl ₃)	•				
Boron trifluoride (BF ₃)					L
Chlorine (Cl ₂)		_			Eye and respiratory irritation
Diborane (B2H6)					Respiratory irritation
Dichlorosilane (SiH ₂ Cl ₂)					
Germane (GeH ₄)					
Hydrogen chloride (HCl)					
Hydrogen fluoride (HF)					Severe burns
Hydrogen (H2)					
Phosphine (PH ₃)		•		+	Respiratory irritation, death
Phosphorus pentachloride (PCl ₃)	٠				
Silane (SiH ₄)					
Silicon tetrachloride (SiCl ₄)	٠				
Stibine (SbH ₃)					

